苏科华
Supervisor of Doctorate Candidates
Supervisor of Master's Candidates
E-Mail:
Date of Employment:2008-11-02
School/Department:计算机学院
Education Level:研究生毕业
Business Address:D203
Gender:Male
Contact Information:13517299596
Status:Employed
Discipline:Computer Applications Technology
Communications and Information Systems
Other specialties in Software Engineering
Cyberspace Security
Hits:
Impact Factor:10.6
DOI number:10.1109/TIP.2023.3299791
Affiliation of Author(s):IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
Journal:IEEE TRANSACTIONS ON IMAGE PROCESSING
Place of Publication:445 HOES LANE, PISCATAWAY, NJ 08855-4141
Key Words:Cross Relation;Image Retrieval;Transformer
Abstract:Composing Text and Image to Image Retrieval (CTI-IR) aims at finding the target image, which matches the query image visually along with the query text semantically. However, existing works ignore the fact that the reference text usually serves multiple functions, e.g., modification and auxiliary. To address this issue, we put forth a unified solution, namely Hierarchical Aggregation Transformer incorporated with Cross Relation Network (CRN). CRN unifies modification and relevance manner in a single framework. This configuration shows broader applicability, enabling us to model both modification and auxiliary text or their combination in triplet relationships simultaneously. Specifically, CRN includes: 1) Cross Relation Network comprehensively captures the relationships of various composed retrieval scenarios caused by two different query text types, allowing a unified retrieval model to designate adaptive combination strategies for flexible applicability; 2) Hierarchical Aggregation Transformer aggregates top-down features with Multi-layer Perceptron (MLP) to overcome the limitations of edge information loss in a window-based multi-stage Transformer. Extensive experiments demonstrate the superiority of the proposed CRN over all three fashion-domain datasets. Code is available at github.com/yan9qu/crn.
Co-author:Ye Mang,Cai Zhaohui,Du Bo
First Author:Yang Qu
Indexed by:Article
Correspondence Author:Su Kehua
Document Type:J
Volume:32
Page Number:4543-4554
ISSN No.:1057-7149
Translation or Not:no
Date of Publication:2023-08-24
Included Journals:SCI、EI
苏科华,男,武汉大学计算机学院教授、博导;武汉大学科技成果转化中心(技术转移中心)副主任。研究主要集中在最优传输(Optimal Transport)领域,它是研究概率测度间最优变换的一类优化问题。在计算机图形学、机器视觉、人工智能、医学图像处理等领域有着广泛的应用。本人主要研究最优传输的几何计算理论和高效算法,并将其应用于网格保测参数化、三维场景优化、智能烧伤评估和卫星互联网任务优化中。主持包括国家自然科学基金、中央军科委、航天5院、华为公司等20多个项目支持,发表论文50余篇,获批发明专利10余项。为CCF计算机辅助设计与图形学(CAD/CG)和虚拟现实与可视化(TCVRV)专委会的执行委员。