苏科华
Supervisor of Doctorate Candidates
Supervisor of Master's Candidates
E-Mail:
Date of Employment:2008-11-02
School/Department:计算机学院
Education Level:研究生毕业
Business Address:D203
Gender:Male
Contact Information:13517299596
Status:Employed
Discipline:Computer Applications Technology
Communications and Information Systems
Other specialties in Software Engineering
Cyberspace Security
Hits:
Affiliation of Author(s):AAAI Press
Journal:Proceedings of the 37th AAAI Conference on Artificial Intelligence, AAAI 2023
Abstract:Federated learning aims to collaboratively train models without accessing their client's local private data. The data may be Non-IID for different clients and thus resulting in poor performance. Recently, personalized federated learning (PFL) has achieved great success in handling Non-IID data by enforcing regularization in local optimization or improving the model aggregation scheme on the server. However, most of the PFL approaches do not take into account the unfair competition issue caused by the imbalanced data distribution and lack of positive samples for some classes in each client. To address this issue, we propose a novel and generic PFL framework termed Federated Averaging via Binary Classification, dubbed FedABC. In particular, we adopt the "one-vs-all" training strategy in each client to alleviate the unfair competition between classes by constructing a personalized binary classification problem for each class. This may aggravate the class imbalance challenge and thus a novel personalized binary classification loss that incorporates both the under-sampling and hard sample mining strategies is designed. Extensive experiments are conducted on two popular datasets under different settings, and the results demonstrate that our FedABC can significantly outperform the existing counterparts.
Co-author:Shen Li,Luo Yong,Hu Han,Wen Yonggang,Tao Dacheng
First Author:Wang Dui
Indexed by:Journal paper
Correspondence Author:Su Kehua
Document Type:J
Volume:37
Page Number:10095-10103
Translation or Not:no
Date of Publication:2023-06-23
Included Journals:EI
苏科华,男,武汉大学计算机学院教授、博导;武汉大学科技成果转化中心(技术转移中心)副主任。研究主要集中在最优传输(Optimal Transport)领域,它是研究概率测度间最优变换的一类优化问题。在计算机图形学、机器视觉、人工智能、医学图像处理等领域有着广泛的应用。本人主要研究最优传输的几何计算理论和高效算法,并将其应用于网格保测参数化、三维场景优化、智能烧伤评估和卫星互联网任务优化中。主持包括国家自然科学基金、中央军科委、航天5院、华为公司等20多个项目支持,发表论文50余篇,获批发明专利10余项。为CCF计算机辅助设计与图形学(CAD/CG)和虚拟现实与可视化(TCVRV)专委会的执行委员。