• 其他栏目

    王涛

    • 讲师
    • 性别:男
    • 毕业院校:武汉大学
    • 学历:博士研究生毕业
    • 学位:理学博士学位
    • 在职信息:在职
    • 所在单位:数学与统计学院
    • 电子邮箱:

    访问量:

    开通时间:..

    最后更新时间:..

    个人简介

     王涛 讲师        链接  ICM  /  Analysis of PDEs 

    ——————————————————————————————————————————————————————

     通讯地址      武汉武昌区八一路299号 武汉大学  数学与统计学院   

     电子信箱      tao.wang@whu.edu.cn 

    ——————————————————————————————————————————————————————

     教育背景

            —2015年6月毕业于武汉大学获理学博士学位,导师:赵会江 教授、陈贵强 教授  

            —2012年11月至2013年10月牛津大学联合培养博士研究生,导师:陈贵强 教授

            —2009年6月毕业于武汉大学获理学学士学位,导 师:赵会江 教授

    ——————————————————————————————————————————————————————

     工作经历

            —2015年7月至今,武汉大学数学与统计学院 讲师

            —2019年1月至2020年1月,牛津大学数学研究所访问学者,邀请人:陈贵强 教授  

            —2018年6月1日至7月31日,香港城市大学数学系,高级研究助理,邀请人:向伟 教授 

            —2018年4月3日至5月31日,香港城市大学数学系,高级研究助理,邀请人:罗涛 教授  

            —2016年5月至2017年4月,意大利布雷西亚大学博士后,导师:Paolo Secchi 教授  

            —2016年1月5日至2月4日,香港城市大学数学系,博士后研究员,邀请人:向伟 教授

    ——————————————————————————————————————————————————————

    研究方向

            —非线性偏微分方程

     研究兴趣

            —双曲守恒律组中的自由边界和特征间断问题

            —流体力学中偏微分方程定解问题的适定性及其大时间行为  

    ——————————————————————————————————————————————————————

     发表论文目录(也可参见 MATHSCINETORCIDResearchGate


    A copy of my papers can be requested directly to me via tao.wang@whu.edu.cn. 


    [22] With Yuri Trakhinin: Well-Posedness of Free Boundary Problem in Non-relativistic and Relativistic Ideal Compressible Magnetohydrodynamics. arXiv:1912.11924.


    [21] With Robin Ming Chen, Jilong Hu, Dehua Wang, and Difan Yuan: Nonlinear stability and existence of compressible vortex sheets in 2D elastodynamics. J. Differential Equations (2020).


    [20] With Gui-Qiang G. Chen and Paolo Secchi: Stability of Multidimensional Thermoelastic Contact Discontinuities. Arch. Ration. Mech. Anal. (2020). arXiv:1912.13343


    [19] With Alessandro Morando and Paola Trebeschi: Existence and Stability of Nonisentropic Compressible Vortex Sheets. In A. Bressan, M. Lewicka, D. Wang, and Y. Zheng (Eds.): Hyperbolic problems: theory, numerics, applications, 569–576. Am. Inst. Math. Sci. (AIMS), 2020.


    [18] With Gui-Qiang G. Chen and Paolo Secchi: Nonlinear Stability of Relativistic Vortex Sheets in Three-Dimensional Minkowski Spacetime. Arch. Ration. Mech. Anal. 232 (2019), no. 2, 591–695.


    [17] With Yongkai Liao and Huijiang Zhao: Global Spherically Symmetric Flows for a Viscous Radiative and Reactive Gas in an Exterior Domain. J. Differential Equations 266 (2019), no. 10, 6459–6506.


    [16] With Alessandro Morando and Paola Trebeschi: Two-Dimensional Vortex Sheets for the Nonisentropic Euler Equations: Nonlinear Stability. J. Differential Equations 266 (2019), no. 9, 5397–5430.


    [15] With Lin He, Yongkai Liao, and Huijiang Zhao: One-dimensional viscous radiative gas with temperature dependent viscosity. Acta Math. Sci. Ser. B Engl. Ed. 38 (2018), no. 5, 1515–1548.


    [14] With Ling Wan: Asymptotic behavior for cylindrically symmetric nonbarotropic flows in exterior domains with large data. Nonlinear Analysis: Real World Applications 39 (2018), 93–119. 


    [13] With Ling Wan: Symmetric flows for compressible heat-conducting fluids with temperature dependent viscosity coefficients. J. Differential Equations 262 (2017), no. 12, 5939–5977.


    [12] With Huijiang Zhao: One-dimensional compressible heat-conducting gas with temperature-dependent viscosity. Math. Models Methods Appl. Sci. 26 (2016), no. 12, 2237–2275.


    [11] With Ling Wan and Huijiang Zhao: Asymptotic stability of wave patterns to compressible viscous and heat-conducting gases in the half-space. J. Differential Equations 261 (2016), no. 11, 5949–5991.


    [10] With Ling Wan and Qingyang Zou: Stability of stationary solutions to the outflow problem for full compressible Navier-Stokes equations with large initial perturbation. Nonlinearity 29 (2016), no. 4, 1329–1354.


    [9] With Ling Wan: Asymptotic behavior for the one-dimensional pth power Newtonian fluid in unbounded domains. Math. Methods Appl. Sci. 39 (2016), no. 5, 1020–1025.


    [8] One dimensional p-th power Newtonian fluid with temperature-dependent thermal conductivity. Commun. Pure Appl. Anal. 15 (2016), no. 2, 477–494.


    [7] With Ling Wan: Large-time behavior of solutions to the equations of a viscous heat-conducting flow with shear viscosity in unbounded domains. J. Math. Anal. Appl. 436 (2016), no. 1, 366–381.


    [6] With Lin He and Shaojun Tang: Stability of viscous shock waves for the one-dimensional compressible Navier-Stokes equations with density-dependent viscosityActa Math. Sci. Ser. B Engl. Ed. 36 (2016), no. 1, 34–48.


    [5] Vanishing shear viscosity in the magnetohydrodynamic equations with temperature-dependent heat conductivity. Z. Angew. Math. Phys. 66 (2015), no. 6, 3299–3307.


    [4] With Lili Fan, Hongxia Liu, and Huijiang Zhao: Inflow problem for the one-dimensional compressible Navier-Stokes equations under large initial perturbation. J. Differential Equations 257 (2014), no. 10, 3521–3553.


    [3] With Lusheng Wang and Linjie Xiong: Global existence and decay of solutions to the Fokker-Planck-Boltzmann equation. Kinet. Relat. Models 7 (2014), no. 1, 169–194.


    [2] With Huijiang Zhao and Qingyang Zou: One-dimensional compressible Navier-Stokes equations with large density oscillation. Kinet. Relat. Models 6 (2013), no. 3, 649–670.


    [1] With Huijiang Zhao and Qingyang Zou: The Jin-Xin relaxation approximation of scalar conservation laws in several dimensions with large initial perturbation. J. Differential Equations 253 (2012), no. 2, 563–603.