• 其他栏目
    • 语种

    田丰

    • 性别:男
    • 学历:博士研究生毕业
    • 办公地点:信息学部教学实验大楼806
    • 联系方式:x-mol.com/groups/observ
    • 电子邮箱:

    访问量:

    开通时间:..

    最后更新时间:..

    个人简介

    田丰,武汉大学教授、博导,获丹麦哥本哈根大学最佳理学博士论文奖、欧盟H2020玛丽·居学者项目、国家海外高层次人才引进计划青年项目,李小文遥感科学青年奖。研究兴趣包括植被生态遥感、生态系统气候变化响应、碳水循环监测和模拟、涡度相关系统 eddy covariance flux、非洲生态环境、山地植被遥感、生物多样性、遥感数据质量评价等,多项成果发表在Nature子刊、RSE、GCB等顶刊,获RSE优秀审稿人

    主要研究成果:评价了多套全球长时序遥感植被指数产品的时间连续性、验证了全球第一套长时序被动微波遥感植被指数产品的可靠性;利用被动微波遥感数据揭示了全球陆地生态系统植被含水总量的季节物候模式以及物候参数的长时间变化趋势;系统分析了Sentinel-2卫星数据进行欧洲物候制图的可行性,为欧洲哥白尼计划物候产品生产制定了具体参数指标;基于被动微波遥感数据进行了地上生物量和碳储量的时空变化分析;带领团队成员开展了山地植被和土壤遥感监测的系列研究。

    团队动态请戳这里

    教育及工作经历

    2020 -  至今:武汉大学遥感信息工程学院,教授

    2018 - 2020:瑞典隆德大学,博士后、研究员(主要合作者:Lars Eklundh)

    2016 - 2017:丹麦哥本哈根大学,博士后(主要合作者:Jean-Pierre Wigneron, Rasmus Fensholt, Martin Brandt)

    2013 - 2016:丹麦哥本哈根大学,博士(导师:Rasmus Fensholt

    2010 - 2013:中国矿业大学,硕博连读生(导师:汪云甲 教授)

    2006 - 2010:内蒙古农业大学,学士

    科研项目

    十四五国家重点研发计划项目:关键生态参数网格化数据集研制,课题负责人,2023-2027,在研

    十三五国家重点研发计划项目:山地植被遥感监测,子课题负责人,2020-2025,在研

    国家/武汉大学高层次人才引进科研启动项目,主持,2020-2026,在研

    国家自然科学基金项目:被动微波遥感植被,主持,2021-2023,结题

    武汉大学中外联合科研平台种子基金计划重大合作项目:中瑞丹植被生态遥感中心,主持,2022-2023,结题

    欧洲H2020玛丽·居里学者项目,AfriVeg:被动微波遥感非洲植被监测,主持,2019-2020,结题

    欧洲哥白尼计划项目,HR-VPP:欧洲高分辨率植被物候和生产力产品研制,参与,2020-2022,结题

    欧洲H2020学科交叉项目,CROSSDRO:欧洲流域干旱影响综合评估,参与,2020-2022,结题

    本科生教学

    地球系统科学导论,专业选修课,主讲

    代表性文章 Google Scholar

    • Feng, L., Wang, Y., Fensholt, R., Tong, X., Tagesson, T., Zhang, X., Ardö, J., Zhou, J., Shao, W., Dou, Y., Sang, Y., Tian, F.*, (2025). Globally increased cropland soil exposure to climate extremes in recent decades. Nature Communications. 16, 4354. https://doi.org/10.1038/s41467-025-59544-1

    • Huang, S., Sang, Y., Cai, Z., Tian, F.*, (2025). Global Distribution and Local Variation of Pre-Rain Green-Up in Tropical Dryland. Remote Sensing. 17, 1377. https://doi.org/10.3390/rs17081377

    • Dou, Y., Tian, F.*, Wigneron, J.P., Li, X., Zhang, W., Chen, Y., Feng, L., Xie, Q., Fensholt, R. (2024). Satellite observations indicate slower recovery of woody components compared to upper-canopy and leaves in tropical rainforests after drought. Communications Earth & Environment 5(1):725. https://doi.org/10.1038/s43247-024-01892-9

    • Liang, T., Tian, F.*, Zou, L., Jin, H., Tagesson, T., Rumpf, S., He, T., Liang, S., Fensholt, R. (2024). Global assessment of vegetation patterns along topographic gradients. International Journal of Digital Earth, 2404232. https://doi.org/10.1080/17538947.2024.2404232

    • Huang, X., Yin, Y., Feng, L., Tong, X., Zhang, X., Li, J., & Tian, F.* (2024). A 10 m resolution land cover map of the Tibetan Plateau with detailed vegetation types. Earth System Science Data, 16, 3307–3332. https://doi.org/10.5194/essd-16-3307-2024

    • Sang, Y., Tian, F.*, Jin, H., Cai, Z., Feng, L., Dou, Y., & Eklundh, L. (2024). Assessing topographic effects on forest responses to drought with multiple seasonal metrics from Sentinel-2. International Journal of Applied Earth Observation and Geoinformation, 128, 103789. https://doi.org/10.1016/j.jag.2024.103789

    • Zou, L., Tian, F.*, Liang, T., Eklundh, L., Tong, X., Tagesson, T., Dou, Y., He, T., Liang, S., Fensholt, R., (2023). Assessing the upper elevational limits of vegetation growth in global high-mountains. Remote Sensing of Environment 286, 113423. https://doi.org/10.1016/j.rse.2022.113423

    • Dou, Y., Tian, F.*, Wigneron, J.-P., Tagesson, T., Du, J., Brandt, M., Liu, Y., Zou, L., Kimball, J.S. & Fensholt, R., (2023). Reliability of using vegetation optical depth for estimating decadal and interannual carbon dynamics. Remote Sensing of Environment 285, 113390. https://doi.org/10.1016/j.rse.2022.113390 

    • Tian, F.*, Cai, Z., Jin, H., Hufkens, K., Scheifinger, H., Tagesson, T., Smets, B., Van Hoolst, R., Bonte, K., Ivits, E., Tong, X., Ardö, J., Eklundh, L.*, (2021). Calibrating vegetation phenology from Sentinel-2 using eddy covariance, PhenoCam, and PEP725 networks across Europe. Remote Sensing of Environment 260, 112456. https://doi.org/10.1016/j.rse.2021.112456

    • Tong, X.#, Tian, F.#*, Brandt, M., Liu, Y., Zhang, W., Fensholt, R., (2019). Trends of land surface phenology derived from passive microwave and optical remote sensing systems and associated drivers across the dry tropics 1992–2012. Remote Sensing of Environment 232, 111307. https://doi.org/10.1016/j.rse.2019.111307

    • Tian, F.*, Wigneron, J.-P.*, Ciais, P., Chave, J., Ogée, J., Peñuelas, J., Ræbild, A., Domec, J.-C., Tong, X., Brandt, M., Mialon, A., Rodriguez-Fernandez, N., Tagesson, T., Al-Yaari, A., Kerr, Y., Chen, C., Myneni, R.B., Zhang, W., Ardö, J., Fensholt, R., (2018). Coupling of ecosystem-scale plant water storage and leaf phenology observed by satellite. Nature Ecology & Evolution 2, 1428–1435. https://doi.org/10.1038/s41559-018-0630-3

    • Tian, F.*, Brandt, M., Liu, Y.Y., Rasmussen, K., Fensholt, R., (2017). Mapping gains and losses in woody vegetation across global tropical drylands. Global Change Biology 23, 1748–1760. https://doi.org/10.1111/gcb.13464

    • Tian, F.*, Brandt, M., Liu, Y.Y., Verger, A., Tagesson, T., Diouf, A.A., Rasmussen, K., Mbow, C., Wang, Y., Fensholt, R., (2016). Remote sensing of vegetation dynamics in drylands: Evaluating vegetation optical depth (VOD) using AVHRR NDVI and in situ green biomass data over West African Sahel. Remote Sensing of Environment 177, 265–276. https://doi.org/10.1016/j.rse.2016.02.056

    • Tian, F.*, Fensholt, R., Verbesselt, J., Grogan, K., Horion, S., Wang, Y., (2015). Evaluating temporal consistency of long-term global NDVI datasets for trend analysis. Remote Sensing of Environment 163, 326–340. https://doi.org/10.1016/j.rse.2015.03.031