• Click:

Current position: Home > Research Group

Research Focus

金属-能源-环境-可持续发展

研究方向:

1)     新能源资源循环与智能监测

2)     能源金属绿色提取与污染控制

3)     电解技术-人工智能-可持续发展

Research interests:

1)     Resource recycling and intelligent monitoring of renewable energy waste

2)     Green extraction of energy metals and pollution control

3)     Electrolysis technology-artificial intelligence-sustainability

一、 能源资源循环与智能监测

针对退役新能源器件中资源利用不足和环境污染问题,开展退役锂离子电池、铅酸电池、光伏组件、风机叶片、功能合金等固废智能监测、有价资源提取和污染控制方面的研究,研究退役能源器件的智能识别与监测技术(如遥感和图像识别、光谱监测技术等)和绿色回收技术,获得新能源器件典型光谱特征和复杂元素的赋存状态和结构特征,建立复杂元素富集和分离过程中的热力学和动力学数据库,揭示器件解构和元素分离过程中的污染物组成和迁移规律,发展新能源固废的智能监测、绿色回收、污染控制新方法,为新能源固废工程化应用提供科学与技术支撑,完善资源可循、污染可控的产业链条。

Resource recycling and intelligent monitoring of renewable energy wastes

To mitigate the challenges of the low-utilization rate of critical resources and heavy pollution of end-of-life (EoL) renewable energy devices, we focus on intelligent monitoring, resource recycling, and pollution control of EoL Li-ion batteries, lead-acid batteries, solar panels, wind turbines, functional alloys, etc. The research includes intelligent recognition, remote monitoring (e.g., remote sensing, image recognition, spectral monitoring) and green recycling of retired renewable energy resources. In doing so, we aim to achieve the typical spectral signature and complex elemental occurrence states and structural features of these resources, establish a database about thermodynamic and kinetic behaviors, and reveal the structural dissociation, element beneficiation and separation as well as the pollutant compositions and their migration behaviors in various natural systems. Then we want to develop new technologies encompassing intelligent monitoring, green recycling and pollutant control, offering fundamental and technical support to sustain the practical recycling of EoL renewable energy wastes and establish a sustainable and green supply chain. 

代表论文 (representative articles):

1.      Gao SB, Chen X, Qu JK, Guo YY, Shi H, Pang FZ, Guo L, Qu X, Wang DH* & Yin HY*, Recycling of Silicon Solar Panels through a Salt-Etching Approach, Nature Sustainability, 2024, 7(7), 920–930.

2.      Qiu BL, Liu MJ, Qu X, Zhou FY, Xie HW, Wang DH, Lee L Y S* & Yin HY*, Waste Plastics Upcycled for High-Efficiency H2O2 Production and Lithium Recovery via Ni-Co/Carbon Nanotubes Composites, Nature Communications, 2024, 15(1), 6473.

3.      Liu, MJ.; Yang, TC.; Pan, Z.; Lee, J.; An, L.; Qiu, B.; Yin, HY; Yang, C.-M.*; Lee, L. Y. S*. Bridging Li-Ion Batteries and Fuel Cells: From Cathode Leaching Residue to an Atomic-Scale Catalytic System. ACS Energy Letters 2023, 1652-1661.

4.      Qiu BL, Liu MJ, Qu X, Zhang BL, Xie HW, Wang DH, Lee L Y S & Yin HY*, Recycling Spent Lithium-Ion Batteries Using Waste Benzene-Containing Plastics: Synergetic Thermal Reduction and Benzene Decomposition, Environmental Science & Technology, 2023, 57(19), 7599–7611.

5.      Zhao JJ, Zhou FY, Wang HY, Qu X, Wang DF, Cai YQ, Zheng ZY, Wang DH & Yin HY*, Coupling Electrochemical Leaching with Solvent Extraction for Recycling Spent Lithium-Ion Batteries, Environmental Science & Technology, 2024, 58(38), 16803-16814.

6.      Zhou FY, Wang HY, Wang SY, Zhao JJ, Qu X, Wang DF, Cai YQ, Zheng ZY, Wang DH & Yin HY*, Balancing the Components of Biomass and the Reactivity of Pyrolysis Gas: Biomass-Assisted Recycling of Spent LiCoO2 Batteries, Environmental Science & Technology, 2024, 58(4), 2102–2111.

7.      Ma Q, Zhao ZQ, Zhao Y, Xie HW, Xing PF, Wang DH, Yin HY*, A self-driven alloying/dealloying approach to nanostructuring micro-silicon for high-performance lithium-ion battery anodes, Energy Storage Materials, 2021, 34, 768-777.

8.      Zhang BL, Qu X, Qu JK, Chen X, Xie HW, Xing PF, Wang DH, Yin HY*, A paired electrolysis approach for recycling spent lithium iron phosphate batteries in an undivided molten salt cell, Green Chemistry, 2020, 22(24), 8633-8641.

9.      Qu X, Xie HW, Chen X, Tang YQ, Zhang BL, Xing PF, Yin HY*, Recovery of LiCoO2 from spent lithium-ion batteries through a low-temperature ammonium chloride roasting approach: thermodynamics and reaction mechanisms, ACS Sustainable Chemistry & Engineering, 2020, 8(16), 6524-6532.

10.   Chen X, Zhang BL, Qu X, Zhou FY, Qiu BL, Xie HW, Wang DH, Yin HY*, Recovery of degraded LiCoO2 through a CO2-assisted low-temperature thermal reduction approach, Chemical Engineering Journal, 2023, 472, 144749.

二、 能源金属绿色提取与污染控制

针对传统方法提取能源金属过程中污染大和能耗高的问题,开展能源金属(LiNaMgCoPbZnSbReTi等)绿色提取理论和方法的研究,研究能源金属在典型矿物和废物(废合金、废盐、废水)中的赋存状态和理化性能,获得能源金属在不同体系中化学键转化的热力学和动力学数据,揭示提取和分离过程中的污染物组成和演变规律,发展利用电子替代传统化学试剂进行元素提取和分离的电解新方法,为能源金属的绿色提取提供新路径。

Green extraction of energy metals and pollution control

To solve the heavy pollution and high energy consumption of conventional methods for energy metal extraction, we focus on fundamental research and novel methods for the extraction of energy metals such as Li, Na, Mg, Co, Pb, Zn, Sb, Re, and Ti. The research mainly studies the elemental occurrence states and physicochemical properties of metal elements in typical minerals and waste (e.g., alloys, salts, wastewater, etc.), and thermodynamic and kinetic behaviors of the chemical-bond transition of these metals in different systems. Then, we aim to reveal the pollutant compositions and their evolution behaviors, thereby developing new electrochemical extraction and separation methods to use electrons as a clean reagent to replace traditional chemicals that have a high environmental footprint. Our goal is to pave a clean way for the extraction of energy metal with less or no secondary waste.

代表论文(representative articles)

1.      Qu JK, Chen X, Xie HW, Gao SB, Wang DH & Yin HY*, Anode Electrolysis of Sulfides, PNAS, 2022, 119(31),1-7.

2.      Yin, HY; Chung, B.; Sadoway, D. R.* Electrolysis of a molten semiconductor. Nature Communications 2016, 7 (1), 12584.

3.      Liu W, Wang XT, Wang F, Du KF, Zhang ZF, Guo YZ, Yin HY* & Wang DH*, A Durable and pH-Universal Self-Standing MoC–Mo2C Heterojunction Electrode for Efficient Hydrogen Evolution Reaction, Nature Communications, 2021, 12(1), 6776.

4.      Guo L, Yin HY*, Li WM, Wang SY, Du KF, Shi H, Wang X, Wang DH, Liquid-metal-electrode-assisted electrolysis for the production of sodium and magnesium, Journal of Magnesium and Alloys, 2025, 13(4), 1579-1591.

5.      Guo L, Gao S, Hu Z, Wu Y, Pang F, Yin HY* & Wang DH, An electrolysis–displacement–distillation approach for the production of Li, Mg, Ca, Sr, and Ba metals, Green Chemistry, 2024, 26(5), 2763-2772.

6.      Zhao HJ, Zhao ZQ, Qu JK, ChenX, Zhou FY, Xie HW, Wang DH, Yin HY*, A combined oxidation and salt-thermal approach to converting copper scraps to copper oxides as energy storage materials, Journal of Cleaner Production, 2021, 320, 128870.

7.      Qu JK, Xie HW, Song QS, Ning ZQ, Zhao HJ, Yin HY*, Electrochemical desulfurization of solid copper sulfides in strongly alkaline solutions, Electrochemistry Communications, 2018, 92, 14-18.

8.      Zhao ZQ, Cai MY, Zhao HJ, Ma Q, Li XY, Xie HW, Xing PF, Zhuang YX, Yin HY*, Metallothermic Reduction of Silica–Carbon Composites: Revealing the Relationship Between Silicon-Based Products and the Reactivity of Reductants, Metallurgical and Materials Transactions B, 2022, 53(4), 2753-2762.

9.      Ma X, Xie HW, Qu JK, Song QS, Ning ZQ, Zhao HJ, Yin HY*, An electro-assisted powder metallurgical route for the preparation of porous Ti and NiTi in molten CaCl2, Metallurgical and Materials Transactions B, 2019, 50(2), 940-949.

10.   Wu YX, Cai MY, Wang HY, Hu ZJ, Pang FZ, Chen X, Zhao MY, Wang BB, Zhang X, Liu XW, Wang DH, Yin HY*, An Electrochemical Approach to Prepare Liquid Sodium-Lead Alloy using a Molten NaCl-Na2CO3 Electrolyte, Metallurgical and Materials Transactions B, 2025, 564010–4024.

 

三、电化学技术-人工智能-可持续发展

面向低碳、新能源、人工智能和生态文明建设协同发展的迫切需求,以新能源驱动的工业电气化是实现“双碳战略”目标和可持续发展的有效手段。在此背景下,亟需发展新型电化学技术驱动金属冶炼、二氧化碳捕集与转化、电解储能、电化学合成化学品等新技术,利用人工智能、机器学习、全生命周期评价等手段构建大数据模型并对工艺进行预测,获得电解技术全生命周期的碳排放、能量核算、环境效应数据,指导并优化电化学工艺设计,为企业和政府政策制定提供支撑。

Green extraction of energy metals and pollution control

We are living in an era with an urgent need to achieve a low-carbon, intelligent, renewable energy-driven, and ecological benign society. In this context, the electrification of industry driven by renewable energy is an effective way to meet the double-carbon goals and sustainable development. We focus on developing novel electrolyzers applied in metal extraction, CO2 capture and conversion, electrolysis for energy storage, electrochemical synthesis, etc. By adopting artificial intelligence, machine learning and life-cycle assessment (LCA) methods, we aim to build a big-data based model to predict the outputs of our technologies. Therefore, we will achieve the data of carbon emissions, energy flows and environmental effects, guiding the optimization of electrochemical technologies and offering advice for entrepreneurs and government officials who make policies.

代表论文(representative articles)

1.      Yin HY, Chung B, Chen F, Ouchi T, Zhao J, Tanaka N & Sadoway D. R.*, Faradaically selective membrane for liquid metal displacement batteries, Nature Energy, 2018, 3(2), 127-131.

2.      Cai MY, Wang SY, Wang HY, Zhou FY, Tang MY, Zhang XD, Qu X, Wang DF, Wang DH, Yin HY*, A Low-Carbon Space-Isolated Zinc Hydrolysis for Harvesting Hydrogen and Salts from Seawater and Wastewater, Angewandte Chemie International Edition, 2025: e12441.

3.      Cai MY, Shi H, Zhang Y, Qu JK, Wang HY, Guo YY, Du KF, Li W, Deng BW, Wang DH, Yin HY*, Rechargeable Zn-H2O Hydrolysis Battery for Hydrogen Storage and Production, Angewandte Chemie International Edition, 2024, 163(26), e202404025.

4.      Yin HY, Mao XH, Tang DY, Xiao W, Xing LR, Zhu H, Wang DH & Sadoway D. R.*, Capture and electrochemical conversion of CO2 to value-added carbon and oxygen by molten salt electrolysis, Energy & Environmental Science, 2013, 6(5), 1538-1545.

5.      Zhou FY, Wang HY, Wang SY, Zhao JJ, Qu X, Wang DF, Cai YQ, Zheng ZY, Wang DH & Yin HY*, Balancing the components of biomass and the reactivity of pyrolysis gas: biomass-assisted recycling of spent LiCoO2 batteries, Environmental Science & Technology, 2024, 58(4), 2102-2111.

6.      Cai MY, Wang HY, Shi H, Zhou FY, Zhang XD, Tang MY, Wang DH, Yin HY*, Coupling CO2 reduction and energy storage by electrolytic zinc, Energy Storage Materials, 2025, 77, 104165.

7.      Cai MY, Zhao ZQ, Qu X, Qu JK, Hu ZJ, Shi H, Gao SB, Wang DH, Yin HY*, Refreshing the liquid-gas reaction interface to provoke the zincothermic reduction of SiCl4 to prepare lithium-storage nano silicon, Energy Storage Materials, 2023, 57, 568-576.

8.      Du P, Liu DX, Chen X, Xie HW, Qu X, Wang DH & Yin HY*, Research progress towards the corrosion and protection of electrodes in energy-storage batteries, Energy Storage Materials, 2023, 57, 371-399.

9.      Wang SY, Zhao LK, Ye H, Shi Z, Zhang HK, Zhou FY, Xu SM, Xing L, Wang DH* & Yin HY*, Green surfactants powering sustainable batteries: industrial-scale life cycle assessment of Tween and Span surfactants for battery systems, Green Chemistry, 2026, 28(1), 581-593.

10.   Wang SY, Zhou FY, Zhao JJ, Wang HY, Cai MY, Wang HC, Wang X, Wang DH* & Yin HY*, Mitigating overestimation in lithium-ion battery recycling LCA: The critical role of ex-post data and operational parameters, Chemical Engineering Journal, 2025, 166261.


Yin Huayi

Date of Birth:1984-07-24 Gender:Male Education Level:With Certificate of Graduation for Doctorate Study Status:Employed School/Department:资源与环境科学学院 Business Address:工学部动力与机械学院新九教501 Contact Information:15998204178 E-Mail: