(三)非线性纳米光子学:研究集成光学芯片上的二阶频率转换过程(如二倍频、和频、五波混频等)、量子等离激元的三阶非线性效应等。
Shunping Zhang, professor in School of Physics and Technology, Wuhan University. He received his Bachelor's degree from Sun Yat-Sen University in 2008 and obtained his Pd. D. degree from Institute of Physics, Chinese Academy of Sciences in January, 2013. He joined Wuhan University first as an outstanding postdoc in Hongxing Xu’s group. After that, he got promoted as an associate professor in April, 2015 and as a full professor in December, 2020. His major achievements include: (i) He developed techniques for qualitative spectroscopic measurements on single nanocavity. He realized the measurement of the quantum-limited plasmonic field enhancement and ultrafast decay rate within nanometer dimension. He realized the manipulation of light-matter interaction in a nanocavity, from weak, intermediated to strong coupling. (ii) He explained the mechanism of symmetry breaking induced Fano resonances are response for improved sensitivity plasmonic sensing (close to 600 citations in Web of Science) and realized ultrasensitive thickness sensing down to sub-picometer resolution. (iii) He invented the concept of chiral surface plasmon polaritons and realized the routing of chiral Raman signal in a nanophotonic waveguide. He has published over 70 peer reviewed papers, with more than 5600 citations in Web of Science. As the first author (including equal contributing first authors) or the corresponding author, he has published papers on Phys. Rev. Lett. (3), Nano Lett. (12) and ACS Nano (6), Nat. Sci. Rev. (2), Nat. Commun. (1), Light: Sci. Appl. (1) etc. Currently, he is focused on the following topics: (i) Strong light-matter interaction in nanocavity, (ii) Integrated nanophotonic devices, and (iii) Nonlinear nanophotonics.