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Abstract—In temporal graphs, time and topology are consid-
ered to be intertwined. As an evidence, it is observed that the
vertices in more cohesive subgraphs have more frequent and
more numerous interactions between each other in the history.
Motivated by that, we study a novel frequency-aware k-core
query problem. Different from previous studies that focus on
finding k-cores in the projected subgraphs of given time intervals,
we look for the subgraphs of k-core in which neighbor vertices
have at least a certain number of high-frequency interactions.
To address the problem, we propose 1) a minimum slope
algorithm for computing the frequency in linear time, 2) a
space-efficient index that stores the distinct “core frequency”
of vertices for addressing arbitrary queries, 3) a propagation
algorithm that collects core frequencies by message passing for
index construction, and 4) efficient algorithms for retrieving a
specific or all skyline results from the index respectively. The
experimental results show that, our algorithms achieve several
orders of magnitude improvement on efficiency compared to
corresponding baselines, and meanwhile, the size of index is
even smaller than that of graph unless the graph has very few
timestamps on each edge. More importantly, by both statistics
and case study, it is verified that the frequency-aware k-core
query indeed find more cohesive subgraphs in the static k-core.

Index Terms—temporal graph, k-core, interaction frequency,
core frequency, skyline.

I. INTRODUCTION

Background. The temporal graph has attracted enormous

research interests recently. In the database community, there

have been a variety of graph query models that take time into

consideration, such as temporal path query [1, 2], temporal

k-core/truss query [3–10], temporal motif/triangle/butterfly

counting [11, 12], etc. In the machine learning community, the

representation learning [13, 14] of temporal graphs becomes a

major task, which aims to capture the dynamic representation

varying with time. In the web search community, the central-

ity [15, 16] in temporal graphs is also an emerging topic.

In related studies, the main difference between temporal and

non-temporal graphs is the presence of timestamped edges.

Figure 1 shows a toy example of temporal social graph.

Each edge has an ordered list of integer timestamps, which

denotes two people had multiple interactions such as follows,

comments, retweets, and likes at different times in the past.

From the perspective of database, the temporal graph is a set

of historical transactions, and in contrast, the non-temporal

graph can be seen as the result of grouping transactions by

endpoints without retaining time.
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Fig. 1: A running example of temporal social graph. The edge

labels are lists of timestamps to indicate when the connected

people had interactions. The dashed frames remark several

frequency-aware k-cores in the graph.

Motivation. Traditional graph queries like the k-core query

can benefit from constraints on the lists of timestamps on

edges. For example, the list length represents the number of

interactions between two vertices, which measures the strength

of the relationship accumulated between the two. However,

a large number alone may result from occasional interac-

tions over a long period, thereby failing to reflect sustained

engagement. Therefore, the list length divided by the span

of timestamps, which measures how frequently two vertices

interact, also offers unique insights. Different from existing

temporal k-core queries [4, 5, 7] that consider two vertices

as mutual neighbors if they have at least one interaction, it is

more reasonable to do so if they have a certain number of high-

frequency interactions. This allows to find a more cohesive

subgraph of k-core, where each vertex has at least k neighbors

in both strong and frequent contact.

To reveal the positive effect of interaction frequency con-

straints on the k-core, we conduct an empirical study on a

real-world temporal social network called Email. In brief, one

constraint is to require a pair of neighbor vertices have at

least t interactions, and the other is to require the maximum

frequency of these at least t interactions is no less than f .

We calculate four widely-used community metrics [17] (see

details in Section VI-F) for k-cores with varying values of t
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Fig. 2: The heat maps of various k-core metrics with respect to the frequency constraints (namely, t and f ) on Email dataset.

Note that, the metrics (a) and (b) are the greater the better, while (c) and (d) are the less the better.

and f . The results are shown as heat maps in Figure 2. We

can see that, the increase of t or f indeed improves the quality

of k-core as a community.

Application. There are many potential application scenarios

of the frequency-aware k-core query.

Social networks. The k-core is widely used to identify

influential users [18, 19]. Obviously, a user has the stronger

influence to another if they have more high-frequency contacts.

For example, in online forums, users with frequent interactions

can trigger discussion cascades faster than those with sparse

ties. Active participants who frequently engage in discussions

and reply to posts play a crucial role in spreading information

and engaging other members of the community. Thus, after

applying interaction frequency constraints to the k-core, we

can identify more influential users.

Transaction networks. The detection of fraud groups can be

assisted by the k-core query [20, 21]. Since only the transfers

whose amounts are greater than a certain value will be

supervised, fraudsters usually use many high-frequency small-

amount microtransactions to evade regulation. Such fraud

groups can be modeled by the frequency-aware k-core.

Communication networks. The k-core is also used to locate

crucial devices, so that we can strengthen the connections

between them in order to enhance the stability of networks [22,

23]. By considering the number and frequency of communica-

tions between devices, we can further narrow down the scope

of crucial devices, thereby reducing maintenance costs.

Challenge. On the one hand, the online query processing

based on core decomposition [24] is inefficient on large-scale

temporal graphs, not to mention the frequency of each edge

needs to be recalculated with respect to given parameters such

as t and f . On the other hand, a straightforward index that

stores the result vertices for all possible parameters is too

redundant and costly in space. Although index compression

techniques such as [25, 26] can potentially address the prob-

lem, they only allow one extra parameter other than k. For

more parameters, the delta encoding scheme is too complicated

to be as effective as in previous work [27]. Moreover, since

there are multiple parameters, query writing could be difficult

when faced with an unfamiliar graph.

Contribution. In this paper, we study the frequency-aware k-

core query problem on temporal graphs. Our contributions are

summarized as follows.

Query model (Section II). As the cornerstone, we define

a novel metric of temporal edge called t-frequency, which

is the highest frequency of at least t interactions on the

edge. Consequently, we define a frequency-aware k-core called

(k, t, f)-core, in which each vertex has k neighbor vertices

such that the t-frequencies of temporal edges between them

are no less than a given threshold f ∈ [0, 1]. The (k, t, f)-core

is flexible compared to other existing definitions. In particular,

it becomes the historical/temporal k-core [4, 5] when t = 1
or the span-core [28] when t equals to the time span.

Frequency computation (Section III). We present a linear-

time algorithm to compute the t-frequency for temporal edges.

The basic idea is to convert the t-frequency problem to an

equivalent minimum slope problem in a particular Cartesian

coordinate system. Then, we leverage the upper convex curve

to prune candidates, thereby reducing the time complexity

from quadratic to linear in terms of the number of timestamps.

Index and Query processing (Section IV). To address the

(k, t, f)-core query problem, we propose both an online core

decomposition algorithm with the worst case time complexity

O(|E| · |T |avg) and a sophisticate Core Frequency Index (CF-

Index) that needs at most O(|V| · log |T |avg) time to process a

query, where |E| is the number of edges, |V| is the number of

vertices, and |T |avg is the average number of timestamps on

each edge. The CF-Index is designed on top of a novel concept

called “core frequency”, which is the maximum value of f
such that a vertex can appear in the (k, t, f)-core with given

k and t. By exploiting the monotonicity of core frequency, the

CF-Index is space-efficient and normally smaller than the orig-

inal graph. Moreover, we develop a scalable index construction

algorithm, which gradually updates the core frequencies by

propagation in the graph until convergence.

Skyline algorithm (Section V). We further study the problem

of finding skyline (k, t, f)-cores. By revealing the intrinsic

relation between skyline (k, t, f) triples and core frequencies

stored in the CF-Index, we develop an efficient algorithm

to obtain skyline (k, t, f) triples directly from the CF-Index.

When faced with an unfamiliar temporal graph, the obtained

skyline (k, t, f) triples can help to determine the valid range

of each query parameter regarding the other two.

Experimental evaluation (Section VI). We perform compre-
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hensive experiments on both real-world and artificial datasets.

Our algorithms for frequency computation, index construction,

and single/skyline query processing achieve several orders of

magnitude improvement over the respective baselines. More-

over, both statistics and case study demonstrate that, time and

topology are “intertwined” in temporal graphs, and the vertices

in more cohesive subgraphs usually have more frequent inter-

actions. Thus, the (k, t, f)-core query can find more cohesive

subgraphs of the k-core effectively and efficiently.

II. PROBLEM FORMULATION

A temporal graph can be represented by G = (V, E), where

V and E represent the set of vertices and the set of indirected

temporal edges between the vertices, respectively. Each tempo-
ral edge in E can be represented by a triple (u, v, T ), where u
and v are the vertices in V and T is an ascending list of distinct

integer timestamps. It indicates that u and v have interactions

at those moments. Figure 1 shows a temporal social graph as

our running example. The temporal edge between the vertices

v1 and v2 is represented by (v1, v2, [1, 5, 10]).

We represent the weight of a temporal edge by an inherent

time-dependent metric, namely, (interaction) frequency. For

static graphs, there exist a variety of metrics of edge weight,

such as the distance in road networks. In contrast to these

time-independent metrics, the frequency F (u, v) = F (T ) =
n

tn−t1+1 ∈ (0, 1] of a temporal edge (u, v, T ) with T =
[t1, t2, · · · , tn] (n ≥ 1) naturally measures how intimately two

vertices interact from the time perspective.

In addition to the frequency that represents the relative

number of interactions divided by time, we also consider

the absolute number (namely, regularity). It is to overlook

the edges with only a few timestamps, because they usually

represent occasional relationships. Thereby, we propose the

following adjusted metric.

Definition 1 (t-Frequency). Given a temporal edge (u, v, T )
with T = [t1, t2, · · · , tn] (n ≥ 1) and an integer t ≥ 1, the
t-frequency Ft(u, v) between u and v is defined as the highest
frequency of at least t interactions recorded in T . Formally,
we have Ft(u, v) = Ft(T ) = max{F (T ′)|T ′ ⊆ T, |T ′| ≥ t}.

Example 1. In Figure 1, for the temporal edge
(v7, v8, [2, 5, 9, 13]), the sublists of timestamps whose
sizes are no less than 3 are [2, 5, 9], [2, 5, 13], [5, 9, 13],
[2, 9, 13], and [2, 5, 9, 13], and their frequencies are 0.375,
0.25, 0.333, 0.25, and 0.333, respectively. As a result,
F3(v7, v8) = F3([2, 5, 9, 13]) = F ([2, 5, 9]) = 0.375.

With the t-frequency, we can identify which vertices have

intimate enough mutual relationships by the following concept.

Definition 2 ((t, f)-Neighbor). Given a temporal graph G, an
integer t ≥ 1, and a float f ∈ [0, 1], two vertices u, v ∈ V are
mutually (t, f)-neighbors, if and only if there is a temporal
edge (u, v, T ) ∈ E between them such that Ft(u, v) ≥ f . For
convenience, we denote by Nt,f (u) the set of (t, f)-neighbors
of the vertex u.

Example 2. In Figure 1, since F3(v7, v8) = 0.375, v7 and v8
are mutually (t, f)-neighbors if t = 3 and f ≤ 0.375.

Then, we formulate a novel concept of cohesive subgraph

called (k, t, f)-core for temporal graphs. This concept re-

shapes the traditional concept of (static) k-core in order

to guarantee that each vertex in a cohesive subgraph has

enough intimate neighbors in terms of interaction regularity

and frequency. In other words, a vertex will not appear in the

(k, t, f)-core if most of its neighbors have only occasional or

infrequent interactions with it.

Definition 3 ((k, t, f)-Core). Given a temporal graph G, an
integer k ≥ 1, an integer t ≥ 1, and a float f ∈ [0, 1], the
(k, t, f)-core (also called frequency-aware k-core) denoted by
Ck
t,f is the maximal subgraph of G such that each vertex u in

Ck
t,f has at least k (t, f)-neighbors, namely, |Nt,f (u)| ≥ k.

Example 3. In Figure 1, we remark several (k, t, f)-cores
by dashed frames. Compared to the (2, 2, 0.5)-core, the other
three cores increase the requirement of k, t, and f , respec-
tively. We can see that, these query parameters can effectively
find different cohesive subgraphs.

Intrinsically, the (k, t, f)-core enhances the k-core by intro-

ducing two parameters t and f with respect to timestamps on

edges. Obviously, the (k, t, f)-core is an even more cohesive

subgraph of the k-core for temporal graphs. In particular, they

are equivalent if t = 1 and f = 0.

We aim to address the problem of querying (k, t, f)-core

in this paper, which returns the set of vertices in a specific

(k, t, f)-core. Moreover, we also consider how to find the

parameter triples (namely, (k, t, f)) of all skyline (k, t, f)-
cores, in order to assist query writing.

III. FREQUENCY COMPUTATION

In this section, we address a preliminary sub-problem of

(k, t, f)-core query, namely, computing the t-frequency for a

specific temporal edge (u, v, T ). Straightforwardly calculating

the frequency for each sublist of T no shorter than t incurs∑|T |
i=t

(|T |
i

)
times of computation, which is too costly for

downstream indexing or querying tasks on temporal graphs

with a great average number of timestamps on edges.

A. Minimum Slope Problem

To solve the computation of the t-frequency efficiently, we

convert it to another equivalent minimum slope problem.

Firstly, we have an observation that a sublist of T can

achieve the highest frequency only if its timestamps are

consecutive in T .

Lemma 1. Given a timestamp list T = [t1, t2, · · · , tn]
(n ≥ 1) and an integer t ≥ 1, let T ′ ⊆ T be a sublist no
shorter than t whose frequency is equal to the t-frequency
Ft(T ), there exists an integer i ∈ [1, n − t + 1] such that
T ′ = [ti, ti+1, · · · , ti+|T ′|−1].

Proof. All proofs in this paper can be found at https://github.

com/graphlab-whu/KTFC/blob/main/proof.pdf.
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Fig. 3: The illustration of two point sets and a t-line between

them for the example temporal edge (v9, v12, T ).

Due to Lemma 1, we can overlook the inconsecutive sublists

of T and only need to compute the frequency
∑n−t+1

i=1 (n −
i− t+ 2) times, which is still exponential.

In order to further reduce the time complexity, we map the

timestamps in T to points in a Cartesian coordinate system.

The x-axis represents the indexes of the timestamps in T ,

and the y-axis represents the values of the timestamps. In

particular, each timestamp ti in T is mapped to two points,

namely, pi = (i, ti) and p′i = (i− 1, ti − 1). The set of points

p1, p2, · · · , pn is referred to the end point set denoted by Pend,

and in contrast, the set of points p′1, p
′
2, · · · , p′n is referred to

the start point set denoted by Pstart.

Then, the frequency of any consecutive sublist of T can be

represented by the slope of a particular line that connects two

points in Pstart and Pend respectively. Consider a line between

p′i = (i − 1, ti − 1) ∈ Pstart and pj = (j, tj) ∈ Pend with

j ≥ i, its slope is denoted by slp(p′i, pj) =
tj−ti+1
j−i+1 , which is

exactly the reciprocal of the frequency of a consecutive sublist

[ti, ti+1, · · · , tj ] of T . Thus, the t-frequency of a specific

temporal edge can be obtained by computing the slope of each

line between p′i and pj with j − i + 1 ≥ t, which is called

t-line.

Lemma 2. Given a timestamp list T = [t1, t2, · · · , tn] (n ≥ 1)
and an integer t ≥ 1, Ft(T ) is the reciprocal of the minimum
slope of all t-lines between p′i = (i− 1, ti − 1) ∈ Pstart and
pj = (j, tj) ∈ Pend with j ≥ i.

Example 4. Figure 3 shows the two point sets Pstart and
Pend for T = [1, 4, 6, 9, 12, 14, 17, 19, 22, 24]). Take the t-
line (p′2, p7) as an example (t ≤ 6). The reciprocal of its
slope is the frequency of the sublist T ′ = [4, 6, 9, 12, 14, 17]:

1
slp(p′

2,p7)
= 7−1

17−3 = |T ′|
17−4+1 .

B. Linear-Time Solution

To address the minimum slope problem for t-lines, we

propose a linear-time algorithm. Given the start point set

Pstart = {p′1, p′2, · · · , p′n} and the end point set Pend = {p1,

p2, · · · , pn}, we compute the minimum slope mslp(·, pj) =
min{slp(p′i, pj)|1 ≤ i ≤ j − t + 1} for the group of t-
lines that connect each end point pj , so that the minimum

value of mslp(·, pj) for 1 ≤ j ≤ n is obviously the result.

Moreover, the most important optimization is to address the

sub-problems, namely, computing mslp(·, pj) incrementally.

The optimization is based on the following step-by-step ob-

servations.

Observation 1. We introduce the Upper Convex Curve (UCC)

on start points denoted by UCCj ⊆ Pstart for a specific end

point pj ∈ Pend, which serves as a pruned solution space of

computing mslp(·, pj). Among the start points p′1, p′2, · · · ,

p′j−t+1 that can be connected to the end point pj by t-lines,

only the slopes of the t-lines from the ones in UCCj could

be the minimum. In other words, any start point p′i such that

slp(p′i, pj) = mslp(·, pj) must be in UCCj .

Definition 4 (Upper Convex Curve). Given an ordered list
of start points p′1, p′2, · · · , p′j−t+1 that can be connected to
the end point pj by t-lines, the upper convex curve UCCj for
pj is a sublist p′c1, p′c2, · · · , p′cm such that slp(p′ci−1, p

′
ci) ≥

slp(p′ci, p
′
ci+1) for c1 < ci < cm. Intuitively, assume there ex-

ist a curve connecting the start points in UCCj consecutively,
all the other start points in the given list lie below this curve.

Lemma 3. For an end point pj and an integer t, any start
point p′i with 1 ≤ i ≤ j − t + 1 such that slp(p′i, pj) =
mslp(·, pj) must satisfy that p′i ∈ UCCj .

Observation 2. To compute the minimum slope mslp(·, pj)
for a given end point pj , we only need to traverse the start

points in UCCj until the “inflection point” is found. Assume

p′l be an Optimal Start Point (OSP) such that slp(p′l, pj) =
mslp(·, pj). For the start points in UCCj before p′l (including

p′l), the slopes of the t-lines from them to pj decrease

monotonically in traversal order. While, for the start points

in UCCj after p′l (including p′l), the slopes of the t-lines from

them to pj increases monotonically in traversal order. Thus,

the traversal can be stopped early if the current slope is greater

than the previous slope.

Lemma 4. The slopes of the t-lines from points in UCCj to
endpoint pj decreases monotonically first and then increases.
(In boundary cases, it may be monotonically decreasing or
increasing).

Observation 3. For an end point pj , we can only use the UCC

of the previous end point (namely, UCCj−1) to obtain its UCC

(namely, UCCj). Because the start points not in UCCj−1 are

surely not in UCCj . In other words, once a start point is

pruned from the UCC for any end point, it is permanent for

the rest end points.

Lemma 5. Those start points other than p′j−t+1 that do not
exist in UCCj−1 cannot exist in UCCj .

Observation 4. For an end point pj , we only need to start the

traversal on UCCj from the previous OSP of pj−1 but not

from the first start point. Because the start points in UCCj−1

before the OSP of pj−1 must not be the OSP of pj . It can be

leveraged to further prune the start points in UCCj , so that

each start point will be traversed only once in the procedure
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Algorithm 1: Linear-time t-frequency computation

Input: An ascending timestamp list T , an integer t ≥ 1
Output: Ft(T )

1 initialize a start point list UCC, mslp ← ∞;
2 for j ← t to |T | do
3 append p′j−t+1 at the end of UCC;

// Maintain the UCC and OSP
4 while |UCC| > 1 and slp(UCC[|UCC|], p′j−t+1) ≥

slp(UCC[|UCC| − 1], UCC[|UCC|]) do
5 remove the last point from UCC; // Lemma 3

6 while |UCC| > 1 and
slp(UCC[1], pj) > slp(UCC[2], pj) do

7 remove the first point from UCC; // Lemma 6

8 mslp ← min(mslp, slp(UCC[1], pj));// UCC[1] is
the OSP for pj

9 return 1/mslp;

of computing mslp(·, pj) for all 1 ≤ j ≤ n.

Lemma 6. When iterating to a new end point pj , points before
its OSP can not be the start point to obtain the minimum slope,
which means that they should be removed from UCC.

Algorithm. Based on the above observations, we design an

efficient algorithm to compute the minimum slope for all t-
lines. Specifically, we enumerate the end points iteratively in

ascending time order and maintain the UCCs and OSPs for

them. In each iteration, we continue to enumerate the start

points in the current UCC from the previous OSP until the

new OSP is identified. Lastly, the minimum slope from the

OSPs to the corresponding end points is returned.

The pseudo code is given in Algorithm 1. It uses a double-

ended queue UCC to maintain UCCj for each end point pj
and a variable mslp to record the latest minimum slope (Line

1). When an end point pj is enumerated, the start point p′j−t+1

is added to UCC (Line 3). Recalling Lemma 3, we need to

remove some points after the addition of p′j−t+1 to maintain

the upper convex curve (Lines 4-5). Then, we find the OSP

for pj by scanning the start points in UCC and can stop early

due to the monotonicity of slope (Lemma 4). Meanwhile, we

can keep removing points that are not OSP until we find it

based on Lemma 6 (Lines 6-7). We update mslp at the end

of each iteration (Line 8), and eventually return the reciprocal

of mslp as the t-frequency Ft(T ) (Line 9).

Example 5. Figure 4 shows the procedure of computing
the 7-frequency of T = [1, 4, 6, 9, 12, 14, 17, 19, 22, 24] by
Algorithm 1. We start to enumerate the end point pj from
j = 7. For j = 7, the start point p′1 is added into
UCC7. Obviously, the OSP is p′1, and we have mslp(·, p7) =
slp(p′1, p7) = 17−0

7−0 = 2.43. Thus, the minimum slope mslp
is updated to 2.43. For j = 8, p′2 is added into UCC8

copied from UCC7. Since slp(p′2, p8) = 19−3
8−1 = 2.29 <

slp(p′1, p8) = 19−0
8−0 = 2.38, p′2 is the OSP in UCC8, and

thereby p′1 is removed from UCC8 by Lemma 6. Now mslp
is updated to 2.29. For j = 9, p′3 is added into UCC9

copied from UCC8. and we can calculate that p′2 is still the
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Fig. 4: The procedure of computing the 7-frequency of the

example temporal edge (v9, v12, T ) by Algorithm 1.

OSP in UCC9 similarly. Thus, mslp remains the same. For
j = 10, p′4 is added into UCC10 copied from UCC9. Since
slp(p′2, p

′
3) =

5−3
2−1 = 2 < slp(p′3, p

′
4) =

8−5
3−2 = 3, p′3 does not

satisfy the upper convex condition and is removed from UCC10

by Lemma 3. Then, we can calculate that p′4 is the OSP in
UCC10 (namely, mslp(·, p10) = slp(p′4, p10) =

24−8
10−3 = 2.29).

Thus, p′2 is removed from UCC10 by Lemma 6, and mslp
remains the same. Finally, the 7-frequency is the reciprocal of
mslp, namely, 1

2.29 = 0.437.

Complexity. Let us analyze the complexity of Algorithm 1.

Since each start point or end point is enumerated at most once,

the time complexity of Algorithm 1 is O(|T |), where T is

the given timestamp list of a temporal edge. Moreover, the

space complexity of Algorithm 1 is also O(|T |), as the only

data structure UCC has each start point enqueued only once.

Consequently, the computation of t-frequency for temporal

edges can be accomplished in linear time and space, and thus

can scale well on temporal graphs in which vertices have

intensive interactions, such as social networks, communication

networks, transaction networks, etc.

IV. INDEX AND QUERY PROCESSING

In this section, we propose both index-free and index-based

algorithms to address the (k, t, f)-core query problem. The

index-free algorithm extends the classic core decomposition

algorithm [24] by filtering edges with respect to frequency.

Since the time complexity of core decomposition is O(|E|),
the index-free algorithm is not efficient on large-scale graphs.

Therefore, we introduce a novel concept called “core fre-

quency”, and design a compact index structure on top of that,

so that a specific (k, t, f)-core can be efficiently obtained from

the index.
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Algorithm 2: Online frequency-aware k-core query.

Input: G, k, t, f
Output: (k, t, f)-core

1 obtain G′ = (V ′, E ′) from G by [24];
2 for (u, v, T ) ∈ E ′ do
3 if |T | < t or Ft(T ) < f then
4 remove (u, v, T ) from E ′;

5 obtain G′′ = (V ′′, E ′′) from G′ by [24];
6 return V ′′;

A. Online Query Algorithm

The online query algorithm is composed of three steps: 1)

obtain the static k-core by core decomposition, 2) remove the

temporal edges whose t-frequency is less than f , and 3) obtain

the (k, t, f)-core by core decomposition again. The rationale is

to avoid to compute the t-frequency for all edges. The pseudo

code of the online algorithm is given in Algorithm 2.

Its correctness is guaranteed by the following observation.

Lemma 7. Given a temporal graph G, Ck
t′,f ′ ⊆ Ck

t,f if t′ ≥ t
and f ′ ≥ f .

According to Definition 3, the (k, t, f)-core reduces to the

k-core if t = 1, so that the (k, t, f)-core is a subgraph of the

k-core for Ck
t,f ⊆ Ck

1,f .

The worst case time complexity of Algorithm 2 is O(|E| ·
|T |avg), where |T |avg is the average number of timestamps

on edges. As k increases, the actual time cost will decrease.

Notably, although precomputing the core number of each

vertex and storing it in the index can accelerate the initial

core decomposition process, this approach does not reduce

the theoretical time complexity of the overall algorithm. This

is because the time complexity is mainly determined by the

second step, as detailed in the experiment in Section VI-C.

B. Index-based Query Algorithm

In order to improve query efficiency, we propose an index

that can answer a specific (k, t, f)-core query without search-

ing the graph.

Key Idea. Lemma 7 implies that the (k, t, f)-core gradually

has vertices removed with the increase of f if k and t are fixed.

In other words, a vertex will only disappear in the (k, t, f)-
core and never reappear as f increases.

Inspired by the above observation, we introduce a concept

“core frequency”, which is similar to the existing concepts core

number (namely, the maximum value of k such that a given

vertex is contained by the k-core) and core time [4](namely,

the earliest end time te such that a given vertex is contained

by the historical k-core during the period [ts, te] for given k
and start time ts).

Definition 5 (Core Frequency). Given integers k and t, the
core frequency of a vertex v is the maximum value of f such
that v is contained by the (k, t, f)-core, which is denoted
by cf(v, k, t). Formally, there exists no float f > cf(v, k, t)

Algorithm 3: CF-Index query

Input: G = (V, E), k, t, f
Output: (k, t, f)-core

1 Ck
t,f ← ∅;

2 for u ∈ V do
3 obtain cf(u, k, t) from the CF-Index;
4 if cf(u, k, t) ≥ f then
5 Ck

t,f ← Ck
t,f ∪ {u};

6 return Ck
t,f

such that v ∈ Ck
t,f . In particular, cf(v, k, t) = −1 if v is not

contained by the (k, t, f)-core for any f ∈ [0, 1].

Example 6. Consider the vertex v4 in Figure 1. Given k = 3
and t = 2, the maximum value of f such that v3 is contained
by the (k, t, f)-core is 0.5, namely, cf(v4, k, t) = 0.5. For
f > 0.5, v3 cannot exist in the (k, t, f)-core.

Index Design. Based on the core frequency, we propose a

novel index called Core Frequency Index (CF-Index). The

purpose is to precompute and store the core frequency of all

vertices for each possible value of k and t. Thus, in order

to determine whether a vertex v is contained by the (k, t, f)-
core, we only need to retrieve cf(v, k, t) from the index and

compare it with f . If cf(v, k, t) ≥ f , we have v ∈ Ck
t,f .

The storage format of CF-Index is shown in Figure 5.

Firstly, the CF-Index has a partition for each k. In the partition

of a specific k, there is a record for each vertex v ∈ V , which

stores the tuples (t, cf(v, k, t)) in ascending order of t. For

example, in the partition of k = 2, the record of the vertex v5
contains five mappings for t = 1, 2, 3, 4, and 5, respectively.

Observation. Moreover, it is observed that, the core frequency

cf(v, k, t) decreases monotonically with the increase of t in

each record for specific k and v.

Lemma 8. Given a vertex v and an integer k, we have
cf(v, k, t) ≥ cf(v, k, t′) if t < t′.

Index Optimization. Due to the monotonicity of core fre-

quency, we can remove the duplicated core frequencies in

each record to reduce the space overhead of CF-Index without

losing information. Specifically, only the tuple (t, cf(u, k, t))
with the minimum t will be stored for each distinct cf(u, k, t).
For example, in the record of the vertex v5 in the partition of

k = 1, the two tuples (2, 1) and (5, 0.5) can be removed. Then,

to retrieve cf(v5, 1, 5), we only need to find the maximum

t ≤ 5 (namely, 4) in the record and return the corresponding

core frequency cf(v5, 1, 4) = 0.5.

Query Processing. Algorithm 3 leverages the CF-Index to

deal with the (k, t, f)-core query. It scans the partition of given

k. For each record of a specific vertex u, it retrieves the core

frequency cf(u, k, t) by a binary search and then determines

whether u should appear in the result by comparing cf(u, k, t)
and f .

Complexity. The time complexity of Algorithm 3 is bounded

by O(|V| · log |T |avg), which is surely lower than that of

Algorithm 2 as |V| << |E|. Moreover, the space complexity
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of CF-Index is bounded by O(kmax · |V| · |T |avg), where kmax

is the maximum value of k for a specific graph.

C. Index Construction
The construction of CF-index is a non-trivial task. Let

us consider a naive implementation firstly. Initially, for each

temporal edge, we compute its t-frequency f for each possible

value of t. Then, for each combination of k and (t, f) pair,

we obtain the corresponding (k, t, f)-core by Algorithm 2.

Lastly, for each vertex u in each (k, t, f)-core, we use (t, f)
to update the record of u in the partition of k. Obviously, this

naive implementation involves a huge amount of redundant

computation and is not scalable.
Pipeline. In order to reduce redundant computation, we

propose a propagation algorithm that avoids to induce any

(k, t, f)-core and directly produces the distinct core frequen-

cies of vertices for each k and t. Specifically, we have the

following three nested steps.
Step 1. For each t ∈ [2, |T |max], we compute the t-

frequency of each edge, and identify the set of edges Et whose

t-frequency has changed with respect to its (t− 1)-frequency,

since the change could lead to the change of core frequency

of the vertices Vt linked by the edges in Et. We use Ck
t ⊆ V

to store the vertices whose core frequency cf(u, k, t) could

change with respect to cf(u, k, t− 1). Initially, we check each

u ∈ Vt and put those whose core frequency has changed into

Ck
t for each k less than the core number of u.
Step 2. In an iteration of t, for each k ∈ [1, kmax], we

enumerate u from Ck
t until Ck

t is empty, and deal with it as

follows. 1) We try to update cf(u, k, t) to a decreased upper

bound that is derived only from the core frequencies of the

neighbors of u. 2) We maintain a particular neighbor vertex set

Nk
t (u) for each vertex u ∈ V to determine whether the core

frequency cf(u, k, t) has changed with respect to cf(u, k, t−1)
in O(1) time. 3) For each neighbor v of u, we add v into Ck

t

if cf(v, k, t) has changed due to the change of cf(u, k, t).
Step 3. Once Ck

t has become empty, for each u ∈ V ,

it is guaranteed that cf(u, k, t) has converged to the true

value during the propagation in Step 2. Then, we put the

core frequency cf(u, k, t) that has changed with respect to

cf(u, k, t− 1) into the record of u in the partition of k for the

CF-Index according to Definition 5.
Observation 1. Our first key finding is an easy-to-compute

condition to determine that cf(u, k, t) has changed with respect

to cf(u, k, t − 1). The core frequency of a vertex u actually

depends on two factors. As t increases, the core frequency

of the neighbors of u could decrease (Lemma 8), and the

t-frequency between u and its neighbors also could decrease.

Thereby, the neighbors could disappear in the (k, t, cf(u, k, t−
1))-core. As a result, u may not have enough (t, cf(u, k, t −
1))-neighbors to appear in the (k, t, cf(u, k, t − 1))-core, so

that cf(u, k, t) could be less than cf(u, k, t− 1).

Lemma 9. Given k and t, let Nk
t (u) be the set of neighbors of

a vertex u such that for each v ∈ Nk
t (u) we have cf(v, k, t) ≥

cf(u, k, t − 1) and Ft(u, v) ≥ cf(u, k, t − 1). Consequently,
cf(u, k, t) < cf(u, k, t− 1) if and only if |Nk

t (u)| < k.

=Partitions

Records

(1, 1) (2, 1) (3, 0.6) (4, 0.57)     
(5, 0.56) (6, -1)

(1, 1) (2, 1) (3, 0.6) 
(4, 0.5) (5, 0.5) (6, -1)=

=
(1, 1) (2, 0.67) (3, 0.5) (4, -1) (1, 1) (2, 1) (3, 0.5)      

(4, 0.44) (5, -1)

(1, 1) (2, 0.5) (3, -1) (1, 1) (2, 0.5) (3, -1)

Fig. 5: The example of CF-Index structure.

Note that, when dealing with a vertex u for specific t and

k in Step 2, cf(v, k, t) may not have been calculated for a

neighbor v of u. If so, we assume that cf(v, k, t) is not changed

(namely, is equal to the upper bound cf(v, k, t − 1)), so that

there will be no false positive (namely, mistakenly determining

that cf(u, k, t) has changed). In the meantime, there will be

no false negative, because u could be added into Ck
t again

whenever cf(v, k, t) has been updated later.

Observation 2. Taking Lemma 9 one step further, we have

the following observation.

Lemma 10. Given t and k, cf(u, k, t) equals to the maximum
float f ≤ 1 such that the number of neighbor vertices (denoted
by v) of u, which satisfy cf(v, k, t) ≥ f and Ft(u, v) ≥ f , is
no less than k.

Based on Lemma 10, we can obtain cf(u, k, t) in a propa-

gation way. Once u is enumerated from Ck
t , it means at least

one neighbor of u cause the decrease of cf(u, k, t). Thereby,

we recompute the maximum float f in Lemma 10 and update

cf(u, k, t) = f accordingly. Intuitively, the value of cf(u, k, t)
will gradually decrease and converge to its true value with the

core frequencies of all neighbors of u have been updated to

the true values.

Algorithm. Algorithm 4 gives the pseudo code of building the

CF-Index. Firstly, we perform the core decomposition [24] to

obtain the core number of all vertices (Line 1). Then, for each

vertex u and each k ≤ core(u), we perform three initialization

operations (Lines 2-7). 1) We add (1, 1) to Recordk(u),
which can answer the (k, t, f)-core query for t = 1 (namely,

the original k-core query). 2) We set the core frequency

cf(u, k, 1) = 1. 3) We initialize the neighbor set Nk
1 as the

neighbors of u in the corresponding k-core.

Then, for each t ≥ 2 in ascending order, we gradually

update cf(u, k, t) by propagation. Initially, we keep cf(u, k, t)
and Nk

t (u) of t as the same as that of t− 1 for each possible

k and u because cf(u, k, t) ≤ cf(u, k, t − 1) (Lines 10-

11). As t increases, the t-frequencies of a set of edges Et

have changed with respect to their (t− 1)-frequencies, which

probably causes the change of the core frequencies of the

vertices linked by them. Therefore, as a seed, each linked

vertex u has Nk
t (u) maintained (Lines 12-17). For an edge

(u, v, T ) ∈ Et, if Ft(u, v) < cf(u, k, t) (or cf(v, k, t)), u
(or v) is removed from Nk

t (v) (or Nk
t (u)) (Line 29). After

that, if cf(u, k, t) (or cf(v, k, t)) is determined to be changed

(Lemma 9), u (or v) is added into Ck
t , namely, activated for

propagation (Lines 30-31). Thus, we may have a number of
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Algorithm 4: CF-Index construction

Input: G = (V, E)
Output: CF-Index of G

1 get the core number core(u) of each vertex u ∈ V by [24];
2 for k ← 1 to kmax do
3 for u ∈ V do
4 if core(u) ≥ k then
5 insert (1, 1) to Recordk(u);
6 cf(u, k, 1) ← 1;

7 Nk
1 (u) ← {v|core(v) ≥ k, (u, v, T ) ∈ E};

8 get Et for each t ∈ [2, |T |max] by Algorithm 1;
9 for t ← 2 to |T |max do

10 cf(u, k, t) ← cf(u, k, t− 1) for all u and k;

11 Nk
t (u) ← Nk

t−1(u) for all u and k;
12 for (u, v, T ) ∈ Et do
13 for k ← 1 to min{core(u), core(v)} do
14 if u ∈ Nk

t (v) and Ft(u, v) < cf(v, k, t) then
15 maintain(u, v, k, t);

16 if v ∈ Nk
t (u) and Ft(u, v) < cf(u, k, t) then

17 maintain(v, u, k, t);

18 for k ← 1 to kmax do
19 while Ck

t �= ∅ do
20 u ← Ck

t .pop();
21 cf(u, k, t) ← updateCF(u, k, t);
22 update f = cf(u, k, t) of (t, f) in Recordk(u);
23 for each neighbor v of u do
24 if cf(v, k, t) ≥ cf(u, k, t) and

Ft(u, v) ≥ cf(u, k, t) then
25 add v to Nk

t (u);

26 if u ∈ Nk
t (v) and cf(u, k, t) < cf(v, k, t)

then
27 maintain(u, v, k, t);

28 Function maintain(u, v, k, t):
29 remove u from Nk

t (v);
30 if |Nk

t (v)| < k and v /∈ Ck
t then

31 add v to Ck
t ;

activated vertices other than the seeds in each Ck
t of different

k. For each k, we continue to enumerate the vertices in Ck
t

(Line 20), and use the updateCF function (Algorithm 5) to

calculate the new (upper bound of) core frequency according

to Lemma 10 (Line 21). If cf(u, k, t) has changed, there must

be (t, f) ∈ Recordk(u), so that we update f to the new

cf(u, k, t) (Line 22). Moreover, for each neighbor v of u, we

check whether v can be added into Nk
t (u) since cf(u, k, t) has

decreased (Lines 24-25), and whether cf(v, k, t) has changed

(Lines 26-27). When Ck
t becomes empty, the update of (t, f)

in all records in the partition of k is finished.

Algorithm 5 gives the pseudo code of updating the (upper

bound of) core frequency of a vertex u for given k and t.
Firstly, we traverse each neighbor v of u, and put the lesser of

cf(v, k, t) and Ft(u, v) into a list F (Lines 1-4). If the length

of F is less than k, u cannot appear in the (k, t, f)-core even
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1
1 1
1

1
1
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Fig. 6: An example of propagation process in Algorithm 4.

Algorithm 5: updateCF(u, k, t)

1 F ← ∅;
2 for each neighbor v of u do
3 if cf(v, k, t) > 0 and Ft(u, v) �= null then
4 F.add(min{cf(v, k, t), Ft(u, v)});
5 if |F | ≥ k then
6 return The k-th largest value in the set F ;

7 else
8 return -1;

if f = 0, so that we return -1 as the core frequency. Otherwise,

we return the k-th greatest value in F as the new upper bound

of cf(u, k, t) according to Lemma 10.

Example 7. Figure 6 shows an example of propagation
process in Algorithm 4. 1) When t = 1, the core frequencies
of all vertices and the t-frequencies of all edges are 1. 2)
When t = 2, the t-frequencies of the edges in red color
decreases, which have been stored in E2 in advance. 3) For
k = 2, the neighbor sets N2

2 (v3), N
2
2 (v4), N

2
2 (v5), N

2
2 (v6),

N2
2 (v9), N2

2 (v12), and N2
2 (v13) of linked vertices should

be updated. For example, since Ft(v3, v6) and Ft(v5, v6)
decrease to be less than cf(v6, 2, 2) = 1, v3 and v5 are
removed from N2

2 (v6), and there is only v4 left in N2
2 (v6),

which means v6 should be added to C2
2 for |N2

2 (v6)| < 2.
As a result, the vertices in red color are added into C2

2

as seeds. 4) Assume v6 be popped from C2
2 firstly. We

update cf(v6, 2, 2) by Algorithm 5. Intuitively, the neigh-
bors of v6 pass the values min{cf(v3, 2, 2), Ft(v3, v6)}=0.5,
min{cf(v4, 2, 2), Ft(v4, v6)}=1, min{cf(v5, 2, 2), Ft(v5, v6)}
=0.67 to v6, and then cf(v6, 2, 2) is aggregated to the 2nd
greatest value 0.67. 5) Since cf(v6, 2, 2) is decreased, the new
core frequency is passed to the neighbors of v6 whose neighbor
sets contain v6, so that we update N2

2 (v4) due to v6 ∈ N2
2 (v4).

6) After that, v6 has been removed from N2
2 (v4), and thereby

v4 is added to C2
2 for |N2

2 (v4)| < 2.
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Complexity. The time complexity of Algorithm 4 has two

parts. During preprocessing, the t-frequencies of all temporal

edges need to be calculated for each t, so the complexity of

preprocessing is roughly O(|E| · |T |2avg) while using Algo-

rithm 1 to compute t-frequency. The overall time complexity

of a single propagation over all vertices is O(E). However,

for specific t and k, the times of propagation necessary before

convergence is not known theoretically. It is observed that

generally only a few core frequency updates for each vertex

are sufficient to stop the algorithm in our experiments. Thus,

the overall time complexity of Algorithm 4 can be estimated

as O(|E| · |T |2avg + |E| · |T |max · kmax · c), where c is a small

variable with respect to specific temporal graphs.

V. SKYLINE QUERY ALGORITHM

In this section, we propose an efficient algorithm based on

the CF-Index to find the skyline (k, t, f)-cores for a given

temporal graph. There are two applications of the skyline

query algorithm. Firstly, we can obtain the Pareto optimal

subgraphs of k-cores in the sense of interaction frequency.

Secondly, based on the results, we can suggest valid query

parameters (namely, k, t, and f ) adaptively, thereby assisting

query writing. The formal definition of skyline (k, t, f)-core

is as follows.

Definition 6 (Skyline (k, t, f)-core). Given a temporal graph
G, a (k, t, f)-core is a skyline (k, t, f)-core if and only if
there does not exist another (k′, t′, f ′)-core that dominates
it, namely, k′ ≥ k, t′ ≥ t, and f ′ ≥ f hold at the same time.

Baseline. In order to find the skyline (k, t, f)-cores, we can

simply enumerate all possible (k, t, f) triples, and obtain

the corresponding (k, t, f)-cores by Algorithm 3. However,

the time complexity is obviously too high. While Sky-

lineComm2D [29] incorporated pruning mechanisms based

on this framework, its computational efficiency remains con-

strained by the substantial overhead from repeated invocations

of Algorithm 3 during query processing. As a result, the

efficiency remains relatively low.

Observations. Interestingly, since the CF-Index preserves the

greatest value of f (namely, the maximum core frequency

cf(u, k, t) of all vertices u ∈ V) for all possible k and t,
we can directly derive the values of k, t, and f for all skyline

(k, t, f)-cores from the CF-Index. Specifically, we have the

following observations.

Lemma 11. For any skyline (k, t, f)-core, f is a core fre-
quency of at least one vertex, and thus is preserved in the
CF-Index.

Lemma 11 guarantees the completeness of obtaining skyline

(k, t, f)-cores from the CF-Index.

Lemma 12. For any skyline (k, t, f)-core, we have t = t′− 1
for a pair (t′, f ′) preserved in the partition of k.

Lemma 12 indicates the possible positions of f (namely,

the corresponding t) in the CF-Index.

Algorithm 6: Skyline (k, t, f) triple query algorithm

Input: G = (V, E)
Output: All skyline (k, t, f) triples of G

1 initialize Sk for each k;
2 for k ← 1 to kmax do
3 for u ∈ V do
4 f ′ ← 0;
5 for (t, f) ∈ Recordk(u) do
6 if Sk.get(t− 1) = null and t > 1 then
7 Sk.set(t− 1, f ′); // Lemma 12

8 else
9 if Sk.get(t− 1) < f ′ then

10 Sk.set(t− 1, f ′);

11 f ′ ← f ;

12 f ′ ← 0;
13 for (t, f) ∈ Sk do
14 if f = f ′ then
15 delete the previous pair from Sk;

16 f ′ = f ; // case 1 in Lemma 13

17 for k ← 2 to kmax do
18 for (t, f) ∈ Sk do
19 if Sk−1.get(t) �= null and Sk−1.get(t) ≤ f then
20 delete (t, f) from Sk−1;

// case 2 in Lemma 13

Based on these two observations, we only need to scan

the CF-Index once to find the candidates of non-dominated

(k, t, f) triples, and then we can remove the candidates that

do not meet the skyline requirements.

Algorithm. The pseudo code of the skyline query is given

in Algorithm 6. We initialize a number of map structures

Sk that store (t, f) key-value pairs in order of t for each k
(Line 1). Then, we scan the CF-Index to obtain the skyline

(k, t, f) triple candidates based on Lemma 11 and 12 (Lines

2-16). For each partition of k ∈ [1, kmax], we traverse the

records of each vertex u ∈ V , and collect induced (t, f)
pairs only if they are not dominated by others. For that,

we only keep the greatest f for each t in Sk (Lines 8-10).

Then, we compare each pair (t, f) only with the successive

pair (t′, f ′) in Sk due to Lemma 8, and remove (t, f) if

f = f ′ (Lines 12-16). Moreover, We still need to remove

the (t, f) pairs that violate the global skyline requirement,

namely, are dominated by others in different Sk (Lines 17-

20). An important observation is that, due to the hierarchical

containment of k-core (Lemma 13), we only need to check

whether (t, f) in Sk is dominated by (t, f ′) in Sk+1 but not

all other pairs.

Lemma 13. For two candidate triples (k, t, f) and (k′, t′, f ′)
obtained from the CF-Index by Lemma 12 (Lines 2-11 in
Algorithm 6), (k, t, f) is dominated by (k′, t′, f ′) in two cases:
1) k = k′, t < t′, f = f ′, or 2) k < k′, t = t′, f = f ′.

Note that, Algorithm 6 only returns the parameter triples of

skyline (k, t, f)-cores. It can be extended to return the vertex
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TABLE I: The statistics of datasets. kmax is the maximum

core number of vertices. |T |max and |T |avg are the maximum

and average timestamp number of edges, respectively.

Name |V| |E| |E| × |T |avg kmax |T |max |T |avg unit

Enron 184 3,125 125,235 16 1183 40.1 sec
Email 986 16,064 332,334 34 4,878 20.7 sec
Trade 255 34,211 507,497 132 31 14.8 year

SocialEvo 74 4,486 2,099,519 56 13,690 468.0 sec
Contacts 694 79,530 2,426,860 98 2,428 30.5 sec
WikiTalk 1,140,149 2,787,967 7,833,140 124 1,561 2.8 sec

DBLP 1,824,701 20,766,016 29,487,744 286 41 1.42 year

Contacts∗ 10,675 1,045,591 23,041,562 155 2,428 22.1 sec
WikiTalk+ 1,140,149 2,787,967 68,867,052 124 1,561 24.7 sec

DBLP+ 1,824,710 20,766,016 209,736,761 124 41 10.1 year

sets of skyline (k, t, f)-cores.
Complexity. Since Algorithm 6 sequentially scans and filters

(t, f) pairs in the CF-Index three times, its time complexity

is equal to the space complexity of the CF-Index, namely,

O(kmax · |V| · |T |avg).
VI. EXPERIMENTS

In this section, we perform comprehensive experiments

to verify the effectiveness and efficiency of our proposed

algorithms on a Windows machine equipped with an Intel

Core i7 CPU at 2.30GHz and 32GB of RAM. Each algorithm

is implemented in C++ and compiled using the g++ compiler

with -O3 optimization.

A. Dataset
We select seven real-world temporal social network datasets

and two artificial datasets. Email and WikiTalk are from

SNAP [30]. DBLP is from KONECT [31]. Enron, Trade,

SocialEvo, and Contacts are from TGX [32, 33]. Contacts∗
is generated by the DyGraph generator [34] to expand the

size with respect to the original distribution. WikiTalk+ and

DBLP+ are generated by adding more random timestamps to

edges of WikiTalk and DBLP.
The basic information about the datasets is presented in

Table I. Note that, many datasets used in previous studies

only have a small average number of timestamps on each

edge (|T |avg), because they are sampled from the original

graphs under certain rules. In contrast, we focus on more “real”

datasets in which vertices interact more frequently, like at least

dozens of times on average.

B. Efficiency of Frequency Computation
To evaluate the efficiency of Algorithm 1, we compare

it with a baseline algorithm that enumerates all possible

consecutive sublits of T no shorter than t. We generate 100

random timestamp lists for each group of selected values of

t and |T |. The mean response time of two competitors are

shown in Figure 7.
Our observations are as follows. 1) Algorithm 1 outperforms

the baseline significantly, which confirms the effectiveness

of UCC and OSP based pruning. 2) When t is fixed, the

response time of Algorithm 1 increases non-exponentially with

the increase of |T |. When |T | is fixed, Algorithm 1 is not

sensitive to the variation of t. Both confirm the linear time

complexity of Algorithm 1.
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Fig. 8: Query efficiency on various datasets.

C. Efficiency of Query Processing

Firstly, we compare the response time of OL (online query

Algorithm 2), OL+ that improves OL by precomputing the

core number of each vertex, and the CF-Index query (Algo-

rithm 3). For each dataset, we randomly generate 20 groups of

query parameters (namely, k, t, and f ) and report the average

response time in Figure 8a. With the help of the skyline query

algorithm, each query parameter is guaranteed to be in the

valid range. The advantage of the CF-Index query is quite

significant. It outperforms the online query by 2∼5 orders

of magnitude. Especially on the Enron dataset, the average

response time is reduced from 57,182 μs to just 2 μs.

Moreover, we examine the query parameter sensitivity of

the CF-Index query on two real-world datasets.

Impact of k. For three groups of t and f values, we vary k
from 2 to 10 in steps of 2. As shown in Figures 9a and 9b, the

response time decreases gradually as k increases. The reason

is that the records of vertices are smaller in the partition of

greater k.

Impact of t. For three groups of k and f values, we vary t
from 2 to 10 in steps of 2. As shown in Figures 9c and 9d,

the response time decreases gradually as t increases. Because

as t grows, it will exceed the maximum value of t in more

and more records, so that the binary search in such records

can be skipped.

Impact of f . For three groups of k and t values, we vary

f from 0.01 to 0.09 in steps of 0.02. As shown in Figures 9e

and 9f, there is no explicit trend of the response times, because

f does not affect the complexity of Algorithm 3.

Lastly, we compare the skyline (k, t, f)-core query algo-
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TABLE II: The statistics of CF-Index construction.

Dataset Baseline (ms)
Alg. 4 CF-Index construction (ms) CFreq Graph Size Index Size Percentage

Preproc (Base | Alg. 1) Indexing Total # (MB) (MB) (%)

Enron 2,955,267 312 | 6 (↓ 98%) 64 70 9,381 1.66 0.15 9%
Email 31,865,189 4,822 | 109 (↓ 97%) 860 969 75,070 5.07 1.28 25%
Trade 15,053,121 14 | 7 (↓ 50%) 1,129 1,136 247,880 5.62 2.44 43%

SocialEvo >86,400,000 537,988 | 1,292 (↓ 99%) 1,047 2,339 148,207 15.98 2.28 14%
Contacts >86,400,000 20,171 | 306 (↓ 98%) 20,709 21,015 651,820 16.00 10.20 63%
WikiTalk >86,400,000 7,268 | 3,790 (↓ 48%) 337,508 341,298 7,497,253 93.09 636.07 676%

DBLP >86,400,000 12,109 | 7,167 (↓ 41%) 398,285 405,452 24,754,718 449.95 2299.15 511%

Contacts∗ >86,400,000 92,687 | 4,731 (↓ 95%) 19,518,265 19,522,996 21,091,198 362.68 280.77 77%
WikiTalk+ >86,400,000 39,074 | 8,225 (↓ 79%) 3,618,957 3,627,182 34,855,744 1480.98 1341.42 91%

DBLP+ >86,400,000 61,712 | 17,896 (↓ 71%) 7,172,034 7,189,930 112,891,483 4018.23 3696.77 92%
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Fig. 9: Query efficiency under varying parameters.

rithm (Algorithm 6) with the baseline algorithm and Sky-

lineComm2D mentioned in Section V. Their response time is

presented in Figure 8b. The CF-Index based skyline algorithm

is at least three orders of magnitude faster than the baseline

algorithm and SkylineComm2D. Even for the largest DBLP+

dataset, it only spends less than two seconds. It is worth

mentioning that the response time of Algorithm 6 on different

datasets is almost proportional to the size of the corresponding

CF-Index (in Table II), since Algorithm 6 primarily involves

traversing the CF-Index.

D. Overhead of Index Construction
Firstly, let us observe the construction time shown in

Table II. The baseline algorithm mention in Section IV-C is

obviously too costly, and even cannot stop in 24 hours for

more than half datasets. In contrast, the propagation style

Algorithm 4 is much more efficient, and stops in less than

1 hour on almost all datasets except Contact*, which incurs

massive upper bound updates because of the heavily skewed

distribution of timestamps on edges. More specifically, the

construction time of Algorithm 4 has two parts. The prepro-

cessing part can be reduced significantly by using Algorithm 1

due to its superiority on frequency computation. The indexing

part normally costs more time than preprocessing, except on

SocialEvo that has an extraordinarily great value of |T |avg .
We also report the space overheads of the constructed CF-

Index in Table II. The CF-Index is smaller than the original

temporal graph for almost all datasets except WikiTalk and

DBLP, whose |T |avg is very few. By comparing CFreq#

(denoting the total number of core frequencies stored in the

CF-Index) and |E| × |T |avg in Table I, it is verified that the

CF-Index effectively reduces the space overhead by leveraging

the discreteness of core frequency variation with respect to

t. Therefore, the CF-Index can scale to large-scale temporal

graphs.

E. Application of Skyline Algorithm
Faced with unfamiliar temporal graphs, it is difficult to find

a valid combination of query parameters that ensures to return

non-empty results immediately, and thus we need the help of

skyline (k, t, f)-core query (Algorithm 6). Figure 10 shows

the surfaces fitted from the skyline (k, t, f) triples returned by

Algorithm 6 on Email. Thus, we can gradually select query

parameters in the feasible space under the skyline surface. Take

the Email dataset as an example. Firstly, if we set k = 12, the

valid range of t is [1, 9] and f is [0, 1]. Subsequently, if we set

t = 3, the valid range of f is [0, 0.5], or if we set f = 0.2, the

valid range of t is [1, 3]. There are totally 224 skyline cores

for the Email dataset. Moreover, we report the sizes of some

skyline cores in the above table for observation.

F. Effectiveness of (k, t, f)-Core Query
From the perspective of statistics, a strong evidence of

effectiveness is the improvement on metrics that evaluate the

2376

Authorized licensed use limited to: Wuhan University. Downloaded on August 25,2025 at 07:24:20 UTC from IEEE Xplore.  Restrictions apply. 



k 2 3 4
t 3 4 2 3 2 3
f 0.6 0.09 1 0.08 0.16 0.02

size 4 4 22 5 52 6

Fig. 10: The surface of skyline

(k, t, f) triples on Email.

(a) (9,4,0)-core vs (9,7,0)-core. (b) (7,5,0)-core vs (7,5,0.5)-core vs (7,5,1)-core.

Fig. 11: The comparison of ego-networks of a same author (David Haussler) in different

(k, t, f)-cores on DBLP.

quality of the (k, t, f)-core as a community with respect to the

k-core. As shown in Figure 2, the heat maps clearly indicate

that there are incremental improvement on four classical

metrics with the increase of t or f if k is fixed. The internal

density
2×|E|

|V|×(|V|−1) is the most straightforward measurement

of the connection tightness within a specific community. The

clustering coefficient
3×triangle(G)

triplet(G) measures the tendency of

vertices to be clustered together, where triangle(G) and

triplet(G) are the numbers of triangles and triplets in G
respectively. Moreover, the average value of the distances

between all pairs of vertices and the number of communities

obtained by the Louvain algorithm [35] in G are also common

metrics. Note that, the first two metrics are the greater the

better, and the last two metrics are the less the better.

Moreover, we conduct a case study on DBLP, which is

a temporal graph of coauthorship. Figure 11a shows the

difference between two ego-networks of a same author David

Haussler in the (9,4,0)-core and the (9,7,0)-core respectively.

We can see that there are four separate communities in the

(9,4,0)-core, while the (9,7,0)-core extracts one from them

with the increase of t from 4 to 7. Then, we observe the

effectiveness of parameter f . Figure 11b shows the ego-

networks in the (7,5,0)-core, (7,5,0.5)-core, and (7,5,1)-core.

After f is increased to 0.5, a part of vertices (in orange color)

are removed. When f is further increased to 1, more vertices

(in green color) are removed. Eventually, the most closely

connected vertices are left.

In conclusion, the above observations demonstrate that,

time and topology are “interwound” in temporal graphs, and

the vertices in more cohesive subgraphs usually have more

frequent interactions. Conversely, the (k, t, f)-core query can

indeed help to find more cohesive subgraphs of the k-core.

VII. RELATED WORK

There are several typical query conditions for temporal

graphs: 1) filtering edges by timestamp [4, 5, 36–44], 2)

restricting the order of timestamps on directed edges of a path

or triangle [2, 11, 45–47], and 3) constraining the duration

or time pan of a subgraph [10, 28, 48–51]. Different from

them, we focus on a new query condition with respect to the

interaction frequency between vertices.

As the most similar query model, the (k, h)-core [3] requires

that there are at least h interactions between each pair of

vertices. However, this restriction does not really take time into

consideration. In contrast, we adopt a novel time-dependent

metric, namely, t-frequency, which considers both the number

of interactions and the time span over them. Although the

previous work [52] aims to identify frequently occurring

patterns in temporal graphs, the subject of frequency is the

subgraph but not the edge.

Moreover, as an ordinary time-dependent concept, the fre-

quency is widely used in the fields of temporal graph represen-

tation learning, time series data analytics, etc. TF-GCL [53]

is a frequency-aware graph contrastive learning framework

for temporal networks to address challenges in capturing

temporal dynamics and differentiating between low and high

frequency vertices. FEDformer [54] demonstrates how (both

low and high) frequency components contribute to long-term

forecasting by capturing global trends and critical events

in data. TS-TFC [55] is a temporal-frequency co-training

framework, which leverages the complementary strengths of

time-domain and frequency-domain representations for semi-

supervised time series learning. These studies have also in-

spired our research.

VIII. CONCLUSION

In this paper, we propose the first frequency-aware k-core

query model on temporal graphs, and design a compact core

frequency index to address the query. Moreover, a collection

of efficient algorithms are developed for frequency computa-

tion, index construction, and single/skyline query processing,

respectively. Our experiments verify that, the frequency-aware

k-core query indeed improve the cohesiveness of the result

subgraph significantly, and the algorithms achieve several

orders of magnitude optimization on the respective tasks.
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