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Abstract—Truss decomposition is to find the hierarchy of
all the k-trusses in a graph for k ≥ 2. Existing GPU-based
algorithms first compute edge support by parallelly count-
ing the number of triangles each edge is contained in, and
then iteratively peel off edges with the smallest support and
update support of the affected edges in parallel. However,
these algorithms perform truss decomposition on undirected
graphs, which causes large storage space and numerous triangle
existence checks during support update. Moreover, they are
developed based on CUDA, which cannot naturally adapt to
emerging hardware accelerators and support the end-to-end
downstream graph machine learning (ML) tasks. In this paper,
we propose a truss decomposition framework based on tensors
(TDT), which can leverage the parallelism of heterogeneous
hardware backends to speed up the computation and seamlessly
integrate with downstream graph ML tasks. We first convert the
original input graph into a directed graph and represent it by
compacted tensors. Then we perform truss decomposition on the
tensorized directed graph by efficient tensor operators. Such a
directed-graph storage model not only saves the storage space
but also naturally supports efficient support computation/update
during the truss decomposition. To further accelerate truss
decomposition, we also partition vertex neighbors into blocks
to balance the computation workload and optimize key steps
such as support computation/update in our framework. Ex-
tensive experimental studies show that our Python-based TDT
algorithm not only achieves 2.3× - 8.5× speedup in most cases
compared with the state-of-the-art CUDA-based algorithms, but
also can efficiently deal with large graphs with hundreds of
millions of nodes and billions of edges while the baseline fails
due to large storage cost. Our source code is publicly available
at https://github.com/LiGuojing194/TDTdecomposition.

Index Terms—Truss decomposition, K-truss, Triangle count-
ing, Cohesive subgraphs

I. INTRODUCTION

Graphs are used to represent relationships among entities

in a wide range of real-world applications, such as social

networks, Web networks, biological networks, etc. Truss

decomposition is a fundamental operation to uncover the

hierarchy of large complex graphs. It aims to find all the k-

trusses for k ≥ 2, where a k-truss is the largest subgraph

where each edge is contained in at least k − 2 triangles

within the subgraph [1]. Fig. 1 gives an example graph where

different k-trusses are marked by different gray areas.
Most earlier works on truss decomposition are based

on CPUs, including in-memory [1], out-of-cores [2], [3],

and parallel [4]–[8] algorithms. The in-memory algorithms

usually include two phases: support initialization to ob-

tain the initial support of each edge (number of trian-

gles containing this edge), and edge peeling to itera-
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Fig. 1: An example graph with truss hierachy

tively peels edges with the smallest support and update

the support of affected edges [1]. The out-of-core algorithms

mainly focus on loading the candidate subgraph from the disk

into the memory to compute k-truss from the smallest/largest

possible k [2], or reducing I/O by graph compression [3]. The

parallel algorithms are either distributed algorithms based on

different computation models such as MapReduce [4], bulk

synchronous parallel model [9], and asynchronous vertex-

centric model [5], or shared-memory algorithms based on

different data structures (PKT [6] based on arrays and MSP

[7] based on a doubly-linked list) or search strategies ( [8]

based on local search). These parallel algorithms use different

strategies to avoid duplicated triangle enumeration in the

support initialization phase, such as degree-based ordering

and edge orientation [3], [6], [7], and the ordered pairs of

edges enumeration [4], [5]. However, they still involve a large

number of triangle existence checking and support update

operations in the edge peeling phase.

Recently, GPU-based algorithms have been proposed to

accelerate truss decomposition. [10] utilizes zero-copy and

unified memory to store the adjacency list that can be directly

accessed by CPU and GPU threads. [11] optimizes collabo-

rative CPU-GPU algorithms for triangle counting and truss

decomposition by short and long updates of the peeled edges.

[12] is a fine-grained parallel truss decomposition algorithm

based on linear algebra to achieve load balance on both CPU

and GPU. OPT-HPU [13] is the most recent CPU-GPU co-

processing algorithm to accelerate the bitmap-based triangle

counting via word-packing, and support updating by dynamic

switch between support recomputation and decrement. During

support initialization, it avoids the duplicated triangle enumer-

ation by degree-based vertex ordering. During edge peeling,

it uses pivot skip merge, graph compaction, and enumeration

skipping to reduce the number of triangle existence checking

operations. However, it stores and manipulates the graph as

undirected, which causes large storage space. Moreover, the

bitmap of each vertex may exceed the limited shared memory
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capacity of a thread, which cannot support efficient truss

decomposition on sparse graphs with a large vertex number

(e.g., graphs with more than two hundred million vertices

such as web-clueweb on Nvidia V100 in the experiments).

Nevertheless, the GPU-based truss decomposition methods

were developed based on CUDA, which cannot naturally

adapt to other emerging hardware accelerators, such as Tensor

Processing Unit (TPU), Neural Processing Unit (NPU), etc.

Moreover, although these CUDA codes can be integrated

into Python by tools such as Pybind, they cannot support

the downstream machine learning (ML) tasks in an end-to-

end manner. For example, ML tasks such as link prediction

[14]–[16], edge classification [17], and popularity prediction

[18] usually take community structure as input to capture

coarse-grained information besides node features, where truss

can be considered as a typical hierarchy community [1],

[19]. Recently, researchers have explored non-ML tasks [20],

[21] based on tensors in DL frameworks (Pytorch, Tensor-

Flow, etc.). These frameworks as well as their compilers

and runtime (TVM, ONNX, etc.), collectively referred to

as Tensor Computation Runtimes (TCRs), provide hardware-

independent optimizations such as operator fusion, operator

sinking, and algebraic simplification to accelerate tensor

computation. Processing non-ML tasks on TCRs can: (1)

uniformly leverage the parallel capability of heterogeneous

hardware (GPU, TPU, NPU, etc.) for speedup by tensor

operators without exploring their specific characteristics and

primitives; (2) seamlessly integrate with the downstream ML

tasks by sharing the same copy of data and allowing end-to-

end tuning of ML models. TQP [20] maps relational queries

to tensor operators and shows its out-performance over the

state-of-the-art baselines. [21] transforms PageRank (PR) into

tensor operators, which outperforms the PR algorithms in

existing GPU-based graph systems and implies the possibility

of accelerating graph algorithms by tensor operators.

However, mapping truss decomposition into the efficient

tensor program is more challenging, as (1) the computation

logic of truss decomposition is more complicated compared

with PR that can be naturally represented by (sparse) ma-

trix/tensor operations; (2) the workload may be imbalanced

when peeling edges and computing/updating support as the

number of triangles associated with each edge may vary

significantly. Besides, we also need to save storage space as

the memory capacity of hardware accelerators is limited com-

pared with the host memory. Thus, in this paper, we propose

a truss decomposition framework based on tensors (TDT). It

first converts the original input graph into a directed graph and

represents it by compacted tensors, and then performs support

initialization and edge peeling on the tensorized directed

graphs by tensor operators. The edge support is computed

based on the intersection operation on the out-neighbors of the

two vertices of each edge without duplication. During edge

peeling, we identify a small set of active edges to update

the affected edges efficiently. Compared with the state-of-

the-art GPU-based algorithm OPT-HPU [13] with undirected

graph storage and bitmap-based triangle computation, our

algorithm not only saves the storage space by more than

a half, but also can support computation/update efficiently.

Compared with CPU-based algorithms [6], [7] which enu-

merate triangles in directed graph by edge orientation but still

involve unnecessary triangle existence checking and support

update operations during edge peeling, we can efficiently

and correctly update the support by only processing the

active edges. To further improve TDT algorithm, we also

partition vertex neighbors into blocks for workload balance,

and optimize the key steps such as support computation and

support update for speedup. In summary, our contributions

are as follows:

• We propose the first tensor-based truss decomposition

framework based on compacted directed graph stor-

age and efficient support computation/update, which

can leverage the parallelism of heterogeneous hardware

backbends for speedup and seamlessly integrate with

graph ML tasks.

• We improve our TDT framework by partitioning vertex

neighbors to balance computation load and optimizing

support computation/update for further acceleration.

• We conduct extensive experimental studies to validate

the outperformance of our TDT algorithm, including

comparisons with state-of-the-art truss decomposition

methods, ablation studies, and scalability testing.

Roadmap. Sec. II introduces the preliminaries. Sec. III gives

our TDT framework. Sec. IV presents the optimization strate-

gies. Experimental studies are reported in Sec. V. Sec. VI

reviews the related works and Sec. VII concludes the paper.

II. PRELIMINARIES

In this section, we first briefly review the basic concepts

and state-of-the-art algorithms for k-truss, and then introduce

tensor computation runtimes and the tensor operators.

A. Problem Definition

An undirected graph is denoted as G = (V,E), where V
and E ⊆ V ×V are vertex set and edge set, respectively. We

use n = |V | and m = |E| to denote the vertex number and

edge number, respectively. For a vertex u ∈ V , its neighbor

set is defined as N(u) = {v | ∀ (u, v) ∈ E}, and its degree is

defined as d(u) = |N(u)|. A triangle �u,v,w in G is a cycle

consisting of three edges (u, v), (u,w), and (v, w). When

G = (V,E) is a directed graph, the set of out-neighbors is

defined as Nout(u) = {v | ∀ (u, v) ∈ E}, and the set of

in-neighbors is defined as Nin(u) = {v | ∀ (v, u) ∈ E}.

Correspondingly, its out-degree and in-degree are defined as

dout(u) = |Nout(u)| and din(u) = |Nin(u)|, respectively.

Based on the above definitions, we give formal definitions

for k-truss as follows.

Definition 1 (SUPPORT). The support of an edge e = (u, v)
in an undirected graph G is the number of triangles contain-
ing e, which is defined as sup(e,G) = |N(u) ∩ N(v)|. We
use sup(e) instead of sup(e,G) when the context is clear.
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Definition 2 (k-TRUSS). The k-truss of an undirected graph
G is the largest subgraph, denoted as Tk, such that the
support of each edge in Tk is at least k−2, i.e., sup(e, Tk) ≥
k − 2. The trussness (truss number) of an edge e ∈ E is the
maximum k such that e belongs to the k-truss, denoted as
τ(e).

Definition 3 (k-CLASS). The k-class of an undirected graph
G is the set of edges with trussness k, which is defined as
Φk = {e | e ∈ E ∧ τ(e) = k}. The union of edges in all the
i-class for i ≥ k forms a k-truss.

Problem Statement. The truss decomposition problem is to

identify all the k-class Φk for k ≥ 2 in a graph G.

B. Existing GPU-accelerated truss decompositon method

Among existing GPU-accelerated truss decomposition al-

gorithms [10]–[13], the most recent work OPT-HPU [13] is

the state-of-the-art. Thus, we briefly review OPT-HPU which

includes three main stages as follows.

Pre-processing. The pre-processing stage aims to initialize

the data structure of the input graph and the auxiliary indices.

The input undirected graph is stored in the Compressed

Sparse Row (CSR) format, which consists of row pointers

rptr and adjacency arrays adj. This stage generates two

additional arrays, eid and ET , where eid is a one-dimensional

array to map neighbors to their corresponding edges ID

and ET records the vertex pairs for each edge, i.e., ET =
(src, dst). Moreover, a support array sup is also initialized

with empty values. Fig. 2 shows the data structure for the

example graph in Fig. 1, where vertex 0 has a neighbor vertex

2, stored in adj[1], and the edge ID of edge (0, 2) is 1, and

thus adj[1] corresponds to eid[1] = 1.

Support Initialization. The support initialization phase

counts the number of triangles associated with each edge.

Specifically, the support of an edge (u, v) is obtained by com-

puting the intersection of N(u) and N(v). Such intersection

is computed based on bitmaps. Suppose that d(v) < d(u)
in edge (u, v). It constructs a bitmap B(u) of size |V | for

N(u). For each w ∈ N(v), it probes B(u) to check the

existence of triangle �u,v,w. To reduce the number of probes,

it further packs N(v) into non-zero machine words for word-

wise lookups on B(u).
Edge Peeling. The edge peeling phase starts on the CPU

and transitions to the GPU once the number of edges is

reduced to a given threshold. Specifically, edges with sup-

port 0 are peeled first; then, starting with edges of support

l = 1, each iteration estimates the time cost between support

recomputation and support decrement to choose a cheaper

way for support update. This process repeats until there are

no edges with support less than or equal to l in the remaining

graph. Then, l is increased by 1 to start the next iteration. It

terminates when the number of remaining edges equals the

number of edges to peel in the current iteration.

Despite the speedup of truss decomposition, OPT-HPU also

has limitations. Besides basic CSR with rptr of size n + 1

sup

0 2 5430 3 4 5VV

rptr

adj

1

eid

src

dst

2

ET

Fig. 2: Data structure for undirected truss decomposition

and adj of size 2m, OPT-HPU also requires auxiliary indices

such as eid of size 2m, ET of size 2m, and sup of size m.

Such a large data structure may exceed the limited capacity of

GPU memory. Furthermore, the bitmap of size n is introduced

for a single thread during support computation, which may

exceed its limited shared memory capacity.

C. Tensor Computation Runtimes

Tensor, abstracted as a multidimensional array, is the

basic data structure in the deep learning model. It can be

a 0-dimensional scalar, 1-dimensional vector, 2-dimensional

matrix, etc. To accelerate tensor computing, hardware manu-

facturers and cloud service providers have invested resources

to develop specialized hardware such as GPUs, TPUs, and

NPUs. At the same time, deep learning frameworks such

as TensorFlow [22], PyTorch [23], MXNet [24], and their

corresponding compilers and runtime systems such as TVM

and ONNX runtimes have also emerged, which together form

the Tensor Computing Runtime Systems (TCRs) [25], [26].

TCRs provide APIs that enable users to easily represent

data by tensors and perform calculations by tensor programs,

efficiently executed on heterogeneous hardware backends.

The tensor operators provided by TCRs include: (1) Initial-
ization: create a tensor, e.g., all 0/1 tensor (ones, zeros),

empty tensor (empty), ordered tensor (range), etc.; (2)

Selection: select elements from a tensor by numerical or

boolean index (tensor[indices], tensor[mask]); (3)

Comparison: compare tensors to generate a boolean result

(eq, lt, gt, le, ge, etc.); (4) Arithmetic: perform basic

arithmetic operations on tensors, e.g., basic operators (+, −,

×, ÷), in-place operators (add_, sub_), etc.; (5) Reorgani-
zation: rearrange elements in a tensor or concatenate multiple

tensors (stack, reshape, sort, cat, etc.); (6) Reduction:

aggregate over a tensor or get unique values from a tensor

(max, min, sum, mean, unique, etc.).

III. TENSOR BASED DIRECTED TRUSS DECOMPOSITION

In this section, we propose a tensor-based truss decom-

position method, consisting of (1) a pre-processing phase

to perform degree-based graph orientation and represent the

directed graph as tensors; (2) a directed truss decomposition

framework based on tensors (Algorithm 1); (3) key functions

used in the framework (Algorithm 2).
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Fig. 3: Degree based graph orientation
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(b) Matrix with degree order

Fig. 4: Adjacent matrices with/without degree order

A. Pre-processing

In the pre-processing phase, we convert the undirected

graph into a directed graph and represent it by compact

tensors to save storage space and accelerate the computation.

Degree based graph orientation. During truss decompo-

sition, the key step is to compute/update edge support. OPT-

HPU [13] stores the input graph as undirected and avoids the

duplicated triangle enumeration by vertex ordering. However,

storing graph as undirected will cost more space. To save

storage space, avoid duplicated enumeration, and balance

the workload, degree-based ordering [27]–[29] and graph

orientation [6], [7], [30] are used to convert an undirected

graph to a directed one for triangle enumeration and truss

decomposition. In this paper, we first sort the vertices of

the undirected graph by their degrees, and then renumber the

vertices based on the ascending order of the degree. Then, we

gradually assign each edge an ID based on its two vertex IDs

from smaller to larger. Finally, we convert each undirected

edge into directed one from the starting vertex with smaller

ID to the ending vertex with larger ID. Note that although

we use a similar graph orientation strategy as previous truss

decomposition methods [6], [7], [30], during edge peeling, we

can optimize edge support update by only activating a small

subset from the tensor of affected edges (see Subsec. III-B),

while previous methods still involve unnecessary triangle

existence checking and support update operations [13].

Fig. 3 illustrates such a graph orientation process for the

example graph in Fig. 1. After renumbering the vertices and

edges, we obtain the vertex-ordered graph in Fig. 3(a), and

after setting the edge direction, we obtain the directed ordered

graph in Fig. 3(b). Fig. 4 further gives the corresponding

matrices for the directed version of the graph in Fig. 1

without degree ordering and the directed graph in Fig. 3(b)

with degree ordering. The out-degrees of vertices in Fig. 4(a)

vary greatly between 0 and 4, while out-degrees of vertices

in Fig. 4(b) are mostly 2. Thus, the degree ordering makes

the number of out-neighbors on each vertex more balanced,

srcssrcs

dst

sup

ET

0 2 5430 3 5V 1

rptr

Fig. 5: Tensorized data structure of the directed ordered graph

which will speed up the parallelization of decomposition.

Compacted graph tensorization. During the edge support

computation and edge peeling, we need to locate the other

two edges that can form a triangle with the target edge,

and the graph storage model needs to support such operation

efficiently. The previous work OPT-HPU [13] stores the input

graph as an undirected graph consisting of two arrays of size

n+1 and m to record the pointer and the adjacent neighbors

respectively, three arrays of size 2m to maintain auxiliary

indices, and a dynamically constructed bitmap of size n
per vertex for edge support computation, which consumes a

large amount of storage space and maintenance time. In this

paper, we decompose trusses based on the directed graph,

where we only perform intersection on the out-neighbors

of the ending vertices for an edge to obtain edge support.

Such a neighbor-intersection-based method costs much less

storage space (O(|Nout(v)|) space for vertex v) compared

to the bitmap-based method (O(n) space per vertex) for

efficient parallel edge support computation based on tensors.

Moreover, in the directed ordered graph, the indices of out-

neighbors adj are the same as the indices of destination

vertices dst. This eliminates the need for additional mappings

between out-neighbors and edges, as well as the need for the

adj and eid arrays. Thus, we can store the directed graph

more compactly using only four tensors, which are: src, dst,
sup of size m to store the starting vertices, ending vertices,

and the support value of edges in ET ; rptr of size n + 1
to store the starting/ending position of the out-neighbors of

vertices in the dst array, i.e., the out-neighbors of vertex u
are dst[rptr[u] : rptr[u + 1]]. Fig. 5 shows the storage in

the tensor format for the directed ordered graph in Fig. 3(b).

The out-neighbors of vertex 1 are dst[1 : 3], i.e., vertices 4

and 5. Correspondingly, the outgoing edges of vertex 1 are

ET [:, 1 : 3], and their corresponding support values are all 1.

Our compacted tensorized representation of directed graphs

reduces storage space by more than a half compared with the

undirected graph [13], and enables fast direct edge location

via out-neighbor vertices to accelerate truss composition.

B. Tensor based Directed Truss Decomposition

We first discuss how to correctly identify affected edges

when peeling edges, and then present the TDT framework.

1) Identification of affected edges. During truss decompo-

sition, when peeling edges, we need to find the edges affected

by these peeling edges and update their support. In fact,

when peeling (u, v), only edges that can form a triangle with

1831

Authorized licensed use limited to: Wuhan University. Downloaded on August 25,2025 at 07:22:34 UTC from IEEE Xplore.  Restrictions apply. 



4

5

3

2

XX
1

44444

55555

33333333

22222222

1
X

444444

555555

Peeling edgesX
Affected edges

X Peeling edgesP
Affected edgesAffected edgesAA

Fig. 6: The example of peeling edges and affected edges

(u, v) can be affected, which are called affected edges [10]–

[12]. For an undirected graph, finding such affected edges

is equivalent to finding the intersection of N(u) and N(v)
in the remaining graph. For a directed graph, we can also

find the affected edges similarly, i.e., compute the intersection

of Nin(u) ∪ Nout(u) and Nin(v) ∪ Nout(v). However, the

number of in- and out-neighbors may be large and thus cost

a lot of computation time. Moreover, if two edges of the

same triangle are peeled, the support of the third edge may

be decreased multiple times. Thus, we propose a new scheme,

which only activates the neighboring edges of the source

vertex of a peeling edge so that the support of affected edges

can be successfully and efficiently updated only once. We

call such edges active edges. Based on active edges, we can

identify all the affected edges by the following theorems.

Theorem 1. When peeling an edge (u, v) in a directed graph
G, the outgoing edges of its active edges include all the edges
of triangles containing (u, v).

Proof. Suppose that the peeling edge (u, v) is contained in a

triangle �u,v,w. Since u < v, the ordering of vertices w, u,

and v falls into one of the following three cases:

• u < v < w. (u, v) and (u,w) are active edges. The

outgoing edges of (u, v) include edges of �u,v,w.

• u < w < v. (u, v) and (u,w) are active edges. The

outgoing edges of (u,w) include edges of �u,v,w.

• w < u < v. (u, v) and (w, u) are active edges. The

outgoing edges of (w, u) include edges of �u,v,w.

Therefore, the outgoing edges of active edges include all

edges of triangles containing (u, v).

Fig. 6 illustrates the relationship between peeling edges

and affected edges. When peeling (1, 4), the active edges are

(1, 4) and (1, 5), and the outgoing edges of (1, 4) include the

edges of �1,4,5 where (4, 5) is the affected edge. Similarly,

when peeling (1, 5), (4, 5) is also the affected edge.

The above theorem ensures that all the triangles containing

the peeling edges can be identified when we only process

the out-neighbors of active edges. Next, we show that no

matter how many edges are peeled in a triangle, the support

of affected edge in the triangle will be only decreased by 1.

Theorem 2. A triangle �u,v,w in a directed ordered graph
G can be identified only when the edge with the smallest ID
in �u,v,w is an active edge.

Proof. Suppose that u < v < w. We consider the following

cases. (1) (u, v)/(u,w) is peeled. (u, v) and (u,w) are active

edges. For (u, v), w is in the intersection of Nout(u) and

Nout(v), i.e. �u,v,w is identified; for (u,w), v is not in the

intersection of Nout(u) and Nout(w) for (u,w) as (v) is

not the out-neighbor of w, i.e., �u,v,w is not identified. (2)

(v, w) is peeled. (u, v) and (v, w) are active edges. Similarly,

for (u, v), �u,v,w is identified; for (v, w), u is not in the

intersection of Nout(v) and Nout(w), i.e. �u,v,w is not

identified. Thus, no matter which edge in �u,v,w is peeled,

(u, v) with the smallest edge IDs will always be the active,

and �u,v,w will be identified.

As shown in Fig. 6, when peeling (1, 4) or (1, 5), (1, 4)
and (1, 5) are active edges. For active edge (1, 4), �1,4,5 is

identified; for active edge (1, 5), �1,4,5 is not identified. Thus,

�1,4,5 is identified only once when edge (1, 4) is active.

Corollary 1. When two edges in �u,v,w are peeled at the
same time in a directed ordered graph, �u,v,w will only
be identified once and the support of the unpeeled edge in
�u,v,w is only decreased by 1.

The above corollary follows directly from Theorem 2, with

proof omitted for brevity. As shown in Fig. 6, when (1, 4) and

(1, 5) are peeled, (1, 4) and (1, 5) are active edges. �1,4,5 is

identified only once when (1, 4) is peeled, and the support of

(4, 5) is decreased by 1 only once.

2) The TDT framework. The TDT framework is shown in

Algorithm 1, which aims to identify 2- to kmax-trusses on the

tensorized directed graph GT = (ET (src, dst), rptr). The

output consists of edges E′
T (sorted by ascending trussness)

and trussness indices tptr, where the k-class are edges of

E′
T [tptr[k−2] : tptr[k−1]] and k-truss are edges in E′

T from

tptr[k−2] to the end. First, we initialize the peeled edges E′
T

and trussness indices tptr as empty tensors (Line 1). Next,

we compute the support of all the edges, sup, by function

ComputeSup (details of this and the following functions will

be illustrated in Subsection III.C.) (Line 2). Then we directly

peel edges that are not contained in any triangles and update

the corresponding trussness index tptr (Lines 3-4). To reduce

the cost of frequent edge deleting, we mark peeled edges and

only perform the actual deletion once the number of marked

edges reaches a certain threshold. Specifically, we use Mdel

to mark the peeled but not yet actually deleted edges and

set their destination vertices dst as -1. Then, starting from

l = 1, we iteratively find the indices of edges with support l,
denoted as Icur (Line 5). If Icur is empty, we add the starting

position of edges with l+2 trussness in E′
T to tptr, increase

l by 1 to find the new indices of edges with support l, and

jump to the next loop (Lines 7-12). If Icur is not empty, we

first identify the active edges, then update the affected edges,

and finally find the next Icur to peel (Lines 13-16). Next, we

elaborate on how to peel non-empty edges in each iteration,

reduce the size of the graph, and stop the termination early.

Edge Peeling. For the current non-empty peeling edge set

ET [Icur], we first identify the indices of the active edges

that share a common vertex with vertices in src[Icur] using

function FindActiveE (Line 13). According to the above

theorems, the support of edges in a triangle containing the

peeling edges will be updated only once. Then, we mark the
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Algorithm 1: TDT

Input: A tensorized directed graph GT = (ET (src, dst), rptr)
Output: Edges E′

T and its truss index tptr in ascending order
1 E′

T ← empty(0); tptr ← empty(0);
2 sup ← ComputeSup(GT );
3 Mdel ← sup == 0; dst[Mdel] ← −1;
4 tptr ← cat(tptr, |E′

T |+ sum(Mdel));
5 l ← 1; Icur ← where(sup == l);
6 while sum(Mdel) + |Icur| < |ET | do
7 if |Icur| == 0 then
8 tptr ← cat(tptr, |E′

T |+ sum(Mdel));
9 if sum(Mdel) > δ then

10 E′
T ← cat([E′

T , ET [Mdel]]);
11 GT , sup,Mdel ←ReduceG(GT , sup,Mdel);

12 l ← l + 1; Icur ← where(sup == l); continue;

13 Iact←FindActiveE(GT , Icur);
14 Mdel[Icur] ← true;
15 Mnext ← UpdateSup(GT , Iact, Mdel, l, sup);
16 dst[Icur] ← −1; Icur ← where(Mnext);

17 E′
T ← cat([E′

T , ET [Mdel]]); tptr ← cat(tptr, |E′
T |);

18 return E′
T , tptr;

edges indexed by Icur as true in Mdel before updating the

support (Line 14). This ensures that Mdel serves not only as

a mask during graph reduction but also is used to determine

whether a triangle contains peeling edges later. In function

UpdateSup, we process the active edges in batch, search the

peeling triangles that contain at least one edge from ET [Icur]
by excluding any deleted edges, and mark the edges to peel

in the next round by Mnext (Line 15). Finally, we mark the

destination vertices of the peeled edges as -1 and obtain the

new Icur from Mnext to step into the next loop (Line 16).

Graph Reduction. If the number of peeled edges

sum(Mdel) exceeds the threshold δ, we append the edges

indexed by Mdel to E′
T , and obtain a smaller GT as well as

the corresponding sup and Mdel by ReduceG (Lines 9-11).

Early Termination. Generally, when Mdel are all true, we

can terminate the iteration. To avoid the peeling process of

ET [Icur] in the final round, we stop the iteration early when

the sum of the number of peeled and peeling edges equals

the total number of edges in the current graph (Line 6), and

immediately output updated E′
T and tptr (Line 17).

C. Key Functions Implementation based on Tensors

Now, we discuss how to implement the four functions used

in the TDT framework (Algorithm 2).

The function ReduceG (Lines 1-6) reduces the graph size

by deleting the peeled edges to accelerate truss decompo-

sition. First, we extract the remaining subgraph using the

mask Mdel, and update ET as well as sup through boolean

indexing. Then, we count false elements in each segment

of Mdel (indexed by rptr) using segment_csr, storing

out-neighbor counts in sizes. Subsequently, the cumulative

sum of sizes is computed by cumsum, and then a zero is

prepended to it by the cat operator. Finally, Mdel is reset to

an all-false boolean tensor of the same length as ET .

Algorithm 2: Key Functions in the TDT Framework

1 Function ReduceG(GT , sup,Mdel)
2 ET ← ET [¬Mdel]; sup ← sup[¬Mdel];
3 sizes ← segment_csr(int(¬Mdel), rptr);
4 rptr ← cat([zeros(1), sizes.cumsum(0)]);
5 Mdel ← full(|ET |, false);
6 return GT , sup, Mdel;

7 Function FindActiveE(GT , Icur)
8 P ← unique(src[Icur]);
9 Mver ←full(|V |, false); Mver[P ] ← true;

10 Mact ← Mver[dst];
11 Idst, ptr ← batch csr select(rptr[P ], rptr[P + 1]);
12 Mact[Idst] ← dst[Idst] > 0; Iact ← where(Mact);
13 return Iact;

14 Function ComputeSup(GT )
15 Iu, uptr ← batch csr select(rptr[src], rptr[src+ 1]);
16 Iv, vptr ← batch csr select(rptr[dst], rptr[dst+ 1]);
17 Mu,Mv ←segment_isin(dst[Iu], dst[Iv], uptr, vptr);
18 sup ← segment_add(int(Mu), uptr);
19 Iuw, ct ← unique(Iu[Mu]); sup[Iuw] ← sup[Iuw] + ct;
20 Ivw, ct ← unique(Iv[Mv]); sup[Ivw] ← sup[Ivw] + ct;
21 return sup;

22 Function UpdateSup(GT , Iact,Mdel, l, sup))
23 U ′, V ′ ← src[Iact], dst[Iact];
24 Iu, uptr ← batch csr select(rptr[U ′], rptr[U ′ + 1]);
25 Iv, vptr ← batch csr select(rptr[V ′], rptr[V ′ + 1]);
26 Mu,Mv ←segment_isin(dst[Iu], dst[Iv], uptr, vptr);
27 sizes ← segment_add(int(Mu), uptr);
28 Iuv ← repeat_interleave(Iact, sizes);
29 Iuw ← Iu[Mu]; Ivw ← Iv[Mv];
30 Mtri ← (dst[Iuw]>0) ∧ (Mdel[Iuv]∨Mdel[Iuw]∨Mdel[Ivw]);
31 Ie ← cat([Iuv[Mtri], Iuw[Mtri], Ivw[Mtri]);
32 Iue, ct ← unique(Ie); sup[Iue] ← sup[Iue]− ct;
33 Mnext ← full(sup.shape, false);
34 Mnext[Iue] ← (¬Mdel[Iue]) ∧ (sup[Iue] <= l);
35 return Mnext;

36 Procedure batch csr select(starts, ends)
37 sizes ← ends− starts;
38 ptr ← cat([zeros(1), sizes.cumsum(0)]);
39 I ← arange(ptr[−1])+

(starts− ptr[: −1]).repeat_interleave(sizes);
40 return I , ptr;

The function FindActiveE (Lines 7-13) effectively identifies

the active edges that need to be processed in updating

the support. Specifically, we first extract the unique source

vertices of the peeling edges by unique, denoted as P .

Then, we create a vertex mask Mver and set Mver[P ] to

true. Since elements in dst for peeled edges are set to -1 and

the last element of Mver is false, Mver[dst] acts as a mask to

filter the incoming edges of P , excluding deleted edges. Next,

we use the procedure batch csr select to obtain the indices

of the outgoing edges for P . Finally, we filter out deleted

edges using dst[Idst] > 0, mark the outgoing and incoming

edges of vertices P in Mact, and obtain the indices of the

active edges by the where operator.

The function ComputeSup (Lines 14-21) computes the

support of each edge. We first use batch csr select to ex-
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tract the out-neighbor indices Iu, Iv and their corresponding

pointers uptr, vptr for source and destination vertices, re-

spectively. The segment_isin operation identifies com-

mon out-neighbors within each segment of the two input

tensors dst[Iu], dst[Iv], producing masks Mu and Mv , where

elements corresponding to common out-neighbors are marked

as true. For each identified �u,v,w, we update sup using

segment_add to compute the number of triangles formed

on edge (u, v). Then, we further increase sup by counting

the number of each unique neighboring edge for (u,w) and

(v, w) using unique. Finally, the updated sup is returned.
The function UpdateSup (Lines 22–35) updates the support

of the affected edges and marks the next peeling edges by

processing only the active edges. It first retrieves the source

and destination vertices of the active edges, denoted as U ′ and

V ′, respectively, and then performs out-neighbor selection

where the indices of out-neighbors (Iu for U ′ and Iv for V ′)
and their corresponding pointers (uptr and vptr) are obtained

in batch via batch csr select (Lines 23-25). Next, the boolean

masks Mu and Mv are generated using segment_isin,

which indicate the segmented common out-neighbors of U ′

and V ′ in dst[Iu] and dst[Iv], respectively. Subsequently, we

store the indices of the edges forming all triangles containing

the active edges and the common neighbors in Iuv , Iuw, and

Ivw. Using segment_add, the number of common out-

neighbors is counted for each edge. This count is then used

with repeat_interleave to generate Iuv (Lines 26-29).

Since the indices of neighbors also represent the indices of

neighboring edges, a mask Mtri is created to identify valid

triangles whose edges have not been marked as deleted and

that include at least one peeling edge (Line 30). Finally, the

indices of edges forming valid triangles are concatenated, and

the unique edges Iue along with their counts ct are obtained

using unique. The support values are updated by subtracting

ct, and Mnext is returned to identify edges whose updated

support values are no longer larger than l (Lines 31-34).
The procedure batch csr select (Lines 36-40) returns the

indices of elements within multiple segmented intervals and

segment pointers. It is used to batchly retrieve the neighbor in-

dices of multiple vertices and concatenate them into a tensor.

Specifically, we first calculate the size of each inter-

val, then use cat and cumsum to generate the cu-

mulative segment pointer, and finally use arange and

repeat_interleave to generate the element indices.

IV. OPTIMIZATIONS

Although our TDT framework can save memory space and

avoid repeated triangle computation/updates, the number of

out-neighbors in the dense part of the graph may still be

large, causing a costly and unbalanced workload in neighbor

intersection. Thus, we further partition vertex neighbors and

optimize the key functions to accelerate the framework.

A. Vertex Neighbor Partition
Our graph orientation strategy can approximately balance

the workload of neighbor intersections. However, we still

rptr

(a) No partitioning

rptr

(b) Partitioning into two blocks

Fig. 7: Vertex neighbor partition in the directed graph

need to examine |dout(v)| + |dout(u)| neighbors for edge

(u, v), which is costly and may even exceed the limited

share memory capacity of a thread. To further accelerate

the intersection, we propose a new strategy to divide the

neighbors of each vertex into ncut blocks based on their index

intervals. Such strategy is tailored for the tensor-based truss

decomposition, differing from the existing neighbor-partition

strategy [30], [31] in the following aspects.

Column based Neighbor Partition. From the perspective

of the adjacency matrix, the column indices of the non-zero

elements in the i-th row correspond to the indices of all the

out neighbors of vertex i. Previous works [30], [31] divide

the adjacency matrix by rows and columns simultaneously,

where each block serves as a computation task to balance

the workload. To fully leverage the parallelism of tensor

operations, we only divide the columns of the matrix into

ncut blocks to reduce the computation cost of neighbor

intersection while keeping the parallel computation of all the

intersection tasks. Equipped with neighbor partition, we can

divide the intersection of two long tensors into multiple sub-

intersection operations of shorter tensors, which can speed up

the intersection by skipping a sub-intersection operation if the

neighbor block of a vertex is empty or has reached its end. For

example, before partition, we need to compare the neighbor

sets {3} and {4, 5} to compute the triangles containing (0, 3)
in Fig. 7(a); after partition, the intersection is decomposed

into two sub-intersection tasks, and we can directly skip sub-

intersection 1 as the neighbor block of vertex 3 is empty and

skip sub-intersection 2 for a similar reason.

Lightweight Adjustment of Data Representation. To

support the vertex neighbor partition, we need to adjust the

neighbor index array rptr accordingly. Initially, each element

in rptr marks the starting position of the neighbor list for

the corresponding vertex; after partitioning, rptr is updated

to indicate the starting/ending positions of each neighbor

block for every vertex. Fig. 7(b) shows the updated rptr data

after partitioning, where the first neighbor block of vertex 0

is dst[rptr[0] : rptr[1]], and the second neighbor block is

dst[rptr[1] : rptr[2]]. Compared with the row and column

based partition [30], [31] which reuire reorganization of both

of adjacent list and the corresponding pointer for each block,

we only need to update the starting position in rptr, which
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Algorithm 3: ComputeSup+
Input: GT = (ET (src, dst), rptr) and ncut

Output: sup
1 sup ← zeros(|src|);
2 for all i, (u, v) ∈ enumerate(ET ) in parallel do
3 for all b ∈ {1, 2, · · · , ncut} in parallel do
4 count ← 0;
5 j, endj ← rptr[u×ncut+b], rptr[u×ncut+b+1];
6 k, endk ← rptr[v×ncut+b], rptr[v×ncut+b+1];
7 while j < endj and k < endk do
8 if dst[j] == dst[k] then
9 atomicAdd(&sup[j], 1);

10 atomicAdd(&sup[k], 1);
11 count++; j ++; k ++;

12 else if dst[j] < dst[k] then j ++;
13 else k ++;

14 atomicAdd(&sup[i], count);

15 return sup ;

is a lightweight adjustment.

In addition, we adjust the input tensors of procedure

batch csr select in Algorithm 2 to adapt our TDT framework

to vertex neighbor partition. After partition, the starting and

ending positions of the neighbors for a batch of vertices U
are represented by rptr[U × ncut] and rptr[(U + 1)× ncut],
respectively. Thus, our partitioning strategy and adjustment

of data representation can naturally fit our TDT framework.

B. Key Function Optimization

As introduced in Section III-C, the ComputeSup function

retrieve the neighbors indices (Iu, Iv in Algorithm 2) of all

edges to compute the edge support in parallel. However, stor-

ing neighbors indices of all the edges may need huge space

(O(|V ||E|) in the worst case). The UpdateSup function also

have similar issue when retrieving the neighbors indices of all

the active edges. To avoid storing the neighbors indices of all

processing edges and enable more flexible computations, we

further optimize the functions ComputeSup and UpdateSup
at CUDA levels, which directly access the neighbors without

explicit neighbor indices construction and are packaged as

Python APIs integrated into our framework.

ComputeSup+. Algorithm 3 outlines the optimized func-

tion ComputeSup+. Based on vertex neighbor partition, multi-

ple threads can process different neighbor blocks of each edge

simultaneously to accelerate the computation of intersections.

We reduce atomic operations by accumulating the number

of detected triangles in a per-thread local variable count,
followed by a single atomic addition to update the support

of the processing edge. ncut threads parallelly compute the

number of triangles on each edge (Lines 1-3). We initialize

count to zero. Then, using the pointer tensor rptr, each

thread retrieves the starting and ending positions of the

neighbor blocks for both vertices on the edge it is responsible

for (Lines 5-6). Next, we use two pointers to traverse these

two neighbor blocks. If the neighbors from both blocks match,

Algorithm 4: UpdateSup+
Input: GT = (ET (src, dst), rptr), Iact, Mdel, l, sup, ncut

Output: Mnext

1 Mnext ← full(sup.shape, false);
2 for all i ∈ Iact in parallel do
3 for all b ∈ {1, 2, · · · , ncut} in parallel do
4 count ← 0; u, v ← src[i], dst[i];
5 j, endj ← rptr[u×ncut+b], rptr[u×ncut+b+1];
6 k, endk ← rptr[v×ncut+b], rptr[v×ncut+b+1];
7 while j < endj and k < endk do
8 if dst[j] == dst[k] then
9 if dst[j]!=−1 and

(Mdel[i] ∨Mdel[j] ∨Mdel[k]) then
10 if sup[j] > l then
11 s ← atomicSub(&sup[j], 1);
12 if (s− 1) == l then Mnext[j] ← true;

13 if sup[k] > l then
14 s ← atomicSub(&sup[k], 1);
15 if (s− 1) == l then Mnext[k] ← true;

16 if ¬Mdel[i] then count++;

17 j ++; k ++;

18 else if dst[j] < dst[k] then j ++;
19 else k ++;

20 if count > 0 then
21 s ← atomicSub(&sup[i], count);
22 if (s− count) <= l then Mnext[i] ← true;

23 return Mnext;

the atomic operation atomicAdd is used to increment the

support of two adjacent edges sharing a common neighbor,

while also increasing the value of count. Otherwise, the

pointers are moved to continue searching for the next common

neighbor (Lines 7-13). Finally, atomicAdd is utilized to add

count to the support of the i-th edge (Line 14).

UpdateSup+. The optimized function UpdateSup+ updates

the support and marks the next peeling edges by processing

each active edge in parallel, as detailed in Algorithm 4.

UpdateSup+ halts further reductions in the support values of

affected edges and flags these edges as the next peeling edges

as soon as they reach the peeling support value. This also

efficiently excludes both already peeled and currently peeling

edges from the next set of edges to peel. Moreover, we reduce

the number of atomic operations by applying a single atomic

decrement to each processing edge and only decrementing

the support of neighboring edges when it exceeds the current

trussness. Algorithm 4 executes the following four main steps:

(1) Locat the neighbor blocks. In the parallel computation

of each neighbor block pair of the active edges, the variable

count is initialized to zero, and the source vertices u and the

destination vertex v of the active edge are retrieved. Then,

based on u, v, and the block number b, the start and end

indices of the two neighbor blocks in dst are located for the

following two-pointer intersection operation (Lines 2-6).

(2) Identify peeling triangles. We identify the peeling

triangles that contain no edges marked for deletion and
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include at least one peeling edge. Specifically, we exclude

-1 as a valid common vertex, because the vertices of edges

marked for deletion are set to -1 in dst. We also use the

logical expression Mdel[i] ∨ Mdel[j] ∨ Mdel[k] to ensure

that the triangle formed by the edges at positions i, j, k
contains at least one peeling edge, as peeling edges are

marked as false in Mdel (Lines 7-10).

(3) Update edge support. We directly perform a decrement

operation on the three edges of the peeling triangle. However,

to reduce unnecessary atomic operations, atomicSub is

only executed when the support of the edge is greater than

the trussness value l (Lines 10-11, 13-14). Furthermore, if

the currently processed active edge is not a peeling edge,

we use the variable count to accumulate the decrease in

its support (Line 16), and then perform a single atomic

decrement operation (Lines 20-21).

(4) Mark the next peeling edges. We leverage the property

of atomicSub which returns the pre-subtraction value. If

the returned value minus the value subtracted in atomicSub
is less than or equal to l, we mark the processing edge for

peeling in the next step (Lines 12, 15, 22).

C. Complexity Analysis

Memory Complexity. A tensorized directed Graph GT

containing src, dst, and rptr requires O(ncut|V | + |E|)
space. The output tensors E′

T and tptr require O(kmax+|E|)
space. The support tensor sup and mask tensors Mdel, Mnext

require O(|E|) space. Since the max trussness kmax is far

smaller than |V |, the total memory complexity of optimized

TDT algorithm is O(ncut|V |+ |E|).
Time Complexity. Suppose that α is the average num-

ber of out-neighbors. The loop is executed β times and

the graph compression is performed � |E|
δ � times. The time

complexity of support computation based on out-neighbors is∑
e∈E O(dout(u)+ dout(v)) = O(α|E|). The time complex-

ity for performing graph reduction is O(� |E|
δ �(|V | + |E|)).

Finding active edges needs to examine each edge in every

loop, whose time complexity is O(β|E|). For support update,

the total number of active edges processed is
∑

e∈E dout(u)
in the worst case (i.e., peeling one edge at a time); the

time complexity for updating edges in the entire algorithm

is O(α
∑

e∈E dout(u)). Therefore, the total time complexity

of the optimized TDT algorithm is O(α
∑

e∈E dout(u) +

� |E|
δ �|V |+ (� |E|

δ �+α+β)|E|).

V. EXPERIMENTS

In this section, we conduct extensive experimental studies

to evaluate the performance of our TDT algorithm.

A. Experimental Setup
Baselines. We compare our TDT algorithm with four state-

of-the-art CPU- and GPU-based algorithms.

• WC [2]. WC is a CPU-based truss decomposition algo-

rithm which processes edges sequentially.

TABLE I: Statistics of graph datasets

Datasets Abbr. |V | |E| kmax

com-dblp CD 317,080 1,049,866 114
Road-NetCA RN 1,964,207 2,766,607 4
com-youtube CY 1,134,890 2,987,624 19
amazon0601 A0 403,394 3,387,388 11
web-Google WG 875,713 5,105,039 44
cit-Patents CP 3,774,768 16,518,948 36

wiki-topcats WT 1,791,489 28,511,807 39
soc-pokec-relationships SP 1,632,803 30,622,564 29

Road-usa RU 23,947,347 57,708,624 4
soc-orkut SO 2,997,166 106,349,209 75

rgg-n-2-24-s0 RG 16,777,215 132,557,200 21
com-orkut CO 3,072,627 234,370,166 78

mawi4 M4 128,568,730 135,117,420 3
protein4 P4 214,005,017 232,705,452 3

web-clueweb CW 428,136,613 446,766,953 80
soc-sinaweibo SS 58,655,850 522,642,066 80

web-cc12-PayLevel WCP 42,889,800 582,567,291 2870
wikipedia WP 27,154,799 1,086,367,222 428
uk-2005 UK 39,459,924 1,566,054,250 589

• Ros [32]. Ros is a CPU-based truss decomposition

algorithm which computes support in parallel, peels edge

and updates edge support sequentially.

• PKT [6]. PKT is a CPU-based parallel truss decompo-

sition algorithm with shared-memory.

• H-IDX [8]. H-IDX is a CPU-based local truss decom-

position method based on h-index.

• OPT-HPU [13]. OPT-HPU is a CPU-GPU co-processing

truss decomposition algorithm which optimizes triangle

counting with word-packing and accelerates support

updates via dynamic switching.

Environments. The source codes of the above baseline

algorithms are provided in [33], where WC, ROS, PKT, and

H-IDX are implemented by C++ and compiled with GCC

7.5.0 while OPT-HPU is implemented with C++/CUDA and

compiled with GCC 7.5.0 and CUDA 10.1. Our algorithm

TDT is implemented by Python with optimized function

further implemented by CUDA, and is compiled with Py-

Torch 2.0.0 and compatible CUDA 11.8. The experiments are

conducted on an NVIDIA V100 GPU with 32GB of VRAM

memory, along with an Intel Xeon Skylake-SP CPU featuring

10 cores and 20 threads, operating at a base frequency of 3.0

GHz. It is also equipped with 72GB of RAM. Besides, a

scalability test is also conducted on a machine equipped with

an Intel Xeon Gold 6248R CPU and an NVIDIA A100 GPU

recently released to analyze the performance of algorithms on

different hardware. The operating system is Ubuntu 20.04.

Datasets. Table I provides the datasets evaluated in the

experiments. All datasets are sourced from well-known plat-

forms such as SNAP (Stanford Network Analysis Platform)

[34] and Network Repository [35], covering real-world ex-

amples from social media, mobile communication, academic

citation, and road traffic networks of various scales.

Parameter Setting. For graph reduction, the threshold for

the number of peeled edges δ is set to 1,000,000 by default.

Such value is chosen based on a trade-off between the time

cost of graph reduction and the performance improvement

of computations on the reduced graph, as shown later in the

scalability testing. For the optimized functions ComputeSup+
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Fig. 8: Comparison of running time for support computation

Fig. 9: Comparison of running time for edge peeling

and UpdateSup+, we allocate 512 threads per block, which

is a common choice for efficient parallelism and resource

utilization across most GPU architectures [36].

B. Comparison of Truss Decomposition Algorithms
The evaluated truss decomposition algorithms can be

broadly divided into two phases: support computation and

edge peeling. In this subsection, we provide a detailed anal-

ysis of the computation time for each phase and the overall

truss decomposition.

Support Computation. Fig. 8 shows the support com-

putation times across five representative datasets (two of

small size, one of medium size, and two of large size) with

increasing edge numbers for all the evaluated algorithms. Our

TDT algorithm outperforms all the baselines in the support

computation step across all datasets, achieving speedups

of 1.5× to 150× over OPT-HPU, 6.9× to 480× over H-

IDX, and 9× to 180× over WC. The general trend shows

that support computation time increases with the size of

the graph. However, on the M4 dataset, OPT-HPU is the

slowest, whereas the other methods perform faster. This is

due to M4 has an extremely large number of vertices while

containing relatively few triangles. Thus, methods based on

neighbor intersection operations can efficiently compute the

support while the bitmap-based method OPT-HPU introduces

significant overhead of bitmap construction and indexing for

such a large number of vertices.

Edge Peeling. Fig. 9 shows the edge peeling times across

the same five datasets. Our TDT method demonstrates excep-

tional performance, achieving speedups of over 1,000× on the

M4 dataset and 350× on the P4 dataset compared with WC,

ROS, PKT, and H-IDX. Moreover, TDT outperforms all the

baselines by being more than 4× faster on the CP and RN

datasets and 2.5× faster on the SS and WP datasets.

Overall Truss Decomposition. The total truss decompo-

sition times are summarized in Table II. For datasets with

extremely large number of vertices such as M4, P4, and CW,

our TDT method demonstrates substantial performance ad-

vantages over baselines. This improvement benefits from our

directed truss decomposition strategy, which processes trian-

TABLE II: Comparison of truss decomposition time (sec)

G CPU-based GPU-based
WC Ros PKT H-IDX OPT-HPU TDT Speedup

CD 0.619 0.373 0.155 0.265 0.636 0.145 4.381
RN 0.525 0.162 0.133 0.357 0.605 0.071 8.480
CY 2.621 2.825 0.692 1.416 0.889 0.418 2.126
A0 2.163 1.500 0.234 0.588 0.662 0.123 5.381
WG 4.116 4.258 0.842 1.868 1.103 0.310 3.559
CP 14.998 9.334 1.969 3.865 1.563 0.345 4.532
WT 55.414 72.804 31.882 53.568 2.215 1.772 1.250
SP 43.948 36.613 5.265 13.265 2.353 1.007 2.337
RU 9.928 1.992 2.480 3.234 2.527 0.030 85.084
SO 482.423 494.057 61.517 312.838 12.586 13.178 0.955
RG 202.283 167.976 12.528 48.391 7.651 1.879 4.072
CO 590.657 592.232 70.889 404.872 13.892 16.663 0.834
M4 47.736 23.023 >1h >1h 44.136 0.042 1061.85
P4 55.403 11.430 8.966 24.495 - 0.072 -

CW - 965.815 241.481 451.487 - 16.750 -
SS 616.125 664.860 104.800 246.356 21.264 8.095 2.627

WCP >1h >1h >1h >1h 176.482 198.660 0.888
WP 2201.213 4708.187 >1h >1h 100.570 27.092 3.712
UK 2561.408 2562.230 >1h >1h 181.275 206.661 0.877

gles edge-by-edge and eliminates redundant triangle searches.

In contrast, OPT-HPU utilizes a bitmap mechanism where the

bitmap size is proportional to |V | for each thread block, which

is prohibitive for graphs with large number of vertices. For

datasets with an exceptionally large number of edges, such

as SS and WP, our TDT method achieves speedups of 2.6×
and 3.7×, respectively, compared to OPT-HPU. However, for

WCP and UK datasets, TDT is slightly slower than OPT-

HPU, primarily due to increased GPU memory consumption

during runtime, while OPT-HPU benefits from leveraging

CPU-assisted storage and computation to mitigate such bot-

tlenecks. Additionally, PKT and H-IDX run for over an hour

on M4, WCP, WP, and UK datasets, while our algorithm TDT

consistently outperforms them with a speedup of over 13× on

large-scale datasets. For smaller graphs with edges less than

one hundred million, TDT consistently outperforms baselines.

Overall, TDT achieves 2.3×-8.5× speedup over OPT-HPU in

most cases, excluding the two extremely highest speedups of

1061× and 85×.

In summary, TDT demonstrates superior performance

across most datasets, especially for graphs with extremely

large numbers of vertices. The main reasons are (1) work-

load reduction achieved by out-neighbor support computa-

tion/update while truss decomposition on undirected graphs

requires intersections on longer neighbor lists or bitmaps (as

shown in Fig. 8 and Fig. 9), (2) balanced workload enabled by

vertex neighbor partition (to be shown later in Fig. 10), and

(3) redundant computation elimination achieved by optimized

key functions (to be shown later in Fig. 11). In addition,

our algorithm also benefits from the hardware-independent

optimizations provided by TCR compilers, such as operator

fusion, operator sinking, and algebraic simplification, which

can further accelerate the tensor computation on the underly-

ing hardware, as stated in the introduction.

C. Evaluation of Optimization Strategies
Next, we analyze the performance improvements achieved

by the optimization strategies introduced in Sec. IV.

Vertex Neighbor Partition. We evaluate the impact of

neighbor partitioning parameters in TDT on sparse and dense

datasets, and show the results in Fig. 10. The run time for
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(a) Sparse datasets (b) Dense datasets

Fig. 10: Effect of neighbor partition ncut on running time

(a) ComputeSup+

(b) Optimized strategy fusion

Fig. 11: Effect of ComputeSup+ and UpdateSup+

all datasets initially decreases sharply with the increase of

partition numbers, then gradually increases. This is because,

with more partitions, the computational workload is more

evenly distributed across threads. However, when the number

of parallel threads exceeds the physical limit supported by the

hardware, it leads to an increase in thread scheduling over-

head and a subsequent drop in performance. Furthermore, for

the sparser graphs RN, M4, A0, RU, and P4, the partitioning

optimization achieves time speedups of 2.4×, 2.2×, 1.5×,

2.7×, and 1.4×, respectively. On the denser large graph, a

speedup of 1.77× is achieved for WCP, and speedups ranging

from 1.1× to 1.2× are achieved for other datasets as they are

already well-balanced after pre-processing.

Optimized Support Computation and Update. We first

compare the computation time of ComputeSup and Compute-
Sup+. Fig. 11(a) shows that ComputeSup+ achieves speedups

of up to 74× on the SP dataset and a minimum of 6.8× on the

WG dataset. Then, we evaluate the combinations of Compute-
Sup+ and UpdateSup+, which has four versions: TDT-origin

without any optimization; +Comp and +Update utilizing only

ComputeSup+ or UpdateSup+; +both using both optimization

functions. As shown in Fig. 11(b), the computation time of the

baseline TDT-origin is consistently the highest, while +both

consistently achieves the lowest computation time. More

importantly, for most datasets, the optimization provided by

UpdateSup+ is more significant. However, for datasets M4

and P4 with kmax = 3, ComputeSup+ demonstrates higher

efficiency as support computation dominates the total run

time. Overall, the combined optimizations deliver the highest

(a) Average memory cost on large datasets

(b) Average memory cost for varying graph densities (WP)

Fig. 12: Comparison of memory cost

Fig. 13: Running time for different parameter δ

speedups, boosting the original TDT by 2.2× to 3.4×.

D. Scalability Testing

We further evaluate the scalability of the algorithms re-

garding memory, parameter, hardware, and GPU numbers.

Scalability on the Memory Cost. We evaluate the average

memory cost (combined CPU and GPU memory) during

the computation process as the evaluated algorithms utilize

either CPU/GPU memory or both. Due to the inefficiency

of automatic GPU memory release in PyTorch, we use

cuda.empty cache() to clear the GPU memory cache at the

beginning of each iteration in TDT for a fair comparison.

Fig. 12(a) shows the result of large-scale datasets on which

all the evaluated algorithms can successfully run, including

CO, M4, SS, WCP, WP, and UK. Overall, TDT achieves the

least average memory cost. Specifically, compared to WC and

OPT-HPU, TDT reduces the memory cost by 35% to 94% due

to (1) the hash map in WC requires substantial memory and

(2) OPT-HPU stores undirected graph on both CPU and GPU;

compared to other CPU-based algorithms (Ros, PKT, and H-

IDX), the average memory reductions of TDT are only 33%,

25%, and 21%, as the GPU memory release mechanism in

TDT is inefficient compared to CPU.

We further investigate the impact of graph density on

memory optimization by randomly sampling different number

of edges from the same dataset (e.g., WP) while keeping the

same number of vertices. Fig. 12(b), shows that as the number

of sampled edges increases, the average memory cost of the

CPU-based algorithm increase almost linearly, while that of

the GPU-based algorithm shows a slight fluctuation, as the
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Fig. 14: Running time for different hardware

TABLE III: Running time on machine with 2 GPU (sec)

Type Datasets
CP WT SP SO CO SS

1-GPU 0.345 1.772 1.007 13.178 16.663 8.095
2-GPU 0.231 0.908 0.529 7.191 8.115 3.536

Speedup 1.494 1.951 1.902 1.833 2.053 2.289

GPU memory is not immediately released as CPU memory

leading to different degree of latency for different runnings.

Overall, as the number of edge/density increases, TDT still

costs the least memory among all the evaluated algorithms.

Scalability on parameters. We evaluate the effect of δ
in our TDT algorithm and show the result in Fig. 13. As δ
increases from 10 to 109, the running time of TDT initially

decreases and then increases slowly, and stably performs well

in the range from 103 to 107. Except for too small/large δ
causing too frequent/rare graph reduction, our algorithm is

robust to the change of δ. We set 106 as the default value

where TDT achieves the best performance for most cases.

Scalability on Hardware Platforms. To evaluate the

performance of algorithms on different hardware, besides

NVIDIA V100, we also evaluate TDT on the recently re-

leased GPU NVIDIA A100. OPT-HPU is not reported as the

required running environment cannot be supported by A100.

The memory costs on these two hardware are negligible,

and we only report the running time, as shown in Fig. 14.

Compared to the previous-generation V100, TDT on A100

achieves a speedup of 1.1× to 2.0×. It shows that our TDT

can be well accelerated by recent hardware.

Scalability on Multi-GPUs. The TDT algorithm can

be easily modified to adapt multi-GPU approach for task

partitioning, where different GPUs handle truss subgraphs

corresponding to different ranges of trussness values. In

Table III, we present the results of experiments by extending

the TDT algorithm to a dual-GPU setup. The dual-GPU task

partitioning approach achieves a performance improvement

ranging from 1.494× to 2.289×.

In summary, our TDT algorithm has the least memory

cost for different graph densities and robust performance for

different parameters and hardware, and can be significantly

accelerated by multiple GPUs.

VI. RELATED WORK

CPU-based Truss Computation. The k-truss model is de-

fined by Cohen [1], where each edge is contained in at least

k-2 triangles inside, and the in-memory algorithm is proposed.

Wang et al. [2] proposed an improved in-memory algorithm to

sort all edges in ascending order of support after support com-

putation, and two out-of-core algorithms in the bottom-up and

top-down manners. Wu et al. [3] further optimized the serial

edge-peeling algorithm and the asynchronous h-index update

algorithm using the graph compression framework Webgraph

[37]. To efficiently handle large graphs, distributed k-truss

decomposition algorithms based on MapReduce [4] and the

bulk synchronous parallel model [9] have been developed.

[32] is shared-memory algorithm which computes support in

parallel, peels edge, and updates support sequentially. PKT

[6] and MSP [7] are both shared-memory parallel algorithms

with different data structures. Sariyüce et al. [8] developed

a parallel shared-memory framework for k-truss and nucleus

decompositions by extending iterative h-index computation.

GPU-based Truss Computation To further accelerate k-truss

decomposition, GPU-based algorithms have been proposed,

such as KTrussExplorer [30] providing multiple configurable

kernels, a linear-algebra based method [38] that renumbers

vertices to balance the workload and stores adjacency lists

of the same vertex in shared memory to optimize memory

access. These two algorithms are tailored to k-truss query

but not truss decomposition. To deal with large-scale graphs,

CPU-GPU collaborated algorithms are further developed.

Date et al. [10] utilized “zero-copy” memory and “unified”

memory to store adjacency lists, which can be directly ac-

cessed by both CPU and GPU threads to simplify memory

management. Mailthody et al. [11] further optimized the

computation by short and long updates of the peeled edges.

Blanco et al. [12] proposed a fine-grained parallel algorithm

based on linear algebra using the edge-centric eager k-truss

decomposition strategy. Recently, Che et al. [13] proposed

OPT-HPU to improve the bitmap-based triangle counting by

a word-packing and accelerate support update by dynamic

switch between support recomputation and decrement.

VII. CONCLUSION

In this paper, we propose the tensor based truss decom-

position framework that can well leverage heterogeneous

hardware for acceleration and well integrates with the down-

stream ML tasks. By converting graphs into directed ones

and represent them by compact tensors, our approach reduces

storage requirements and eliminates redundant triangle enu-

meration. Additionally, partitioning vertex neighbors, along

with optimizing support computation and updates, further

enhances performance. Experimental results demonstrate that

TDT outperforms state-of-the-art methods in terms of effi-

ciency and scalability, making it a powerful tool for large-

scale graph analysis and graph machine learning tasks.
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