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Abstract—Due to the rising concerns on privacy protection,
how to build machine learning models from distributed databases
with privacy guarantees has gained more popularity. Vertical
federated learning (VFL) trains machine learning models in a
privacy-preserving way when the data features are scattered over
distributed databases. We study the participant selection problem
(PSP) for VFL, which chooses a given number of participants to
conduct training while maximizing model accuracy. Compared
to training with all participants, PSP can filter out hitch-riders
that contribute marginally to model quality and reduce training
time by involving fewer participants. To achieve good model
accuracy, we formulate PSP as choosing a set of participants that
maximizes the likelihood of the data samples. Then, utilizing the
k-nearest neighbors (KNN) classifier as the proxy model, we ex-
press the likelihood as a function of the selected participants and
prove that the function is submodular. The submodular property
is favorable as it can account for the feature diversity among
the participants and allows to greedily select the participant
with the maximum gain in each step. However, the selection
process requires finding the top-%£ neighbors of a data sample
as the basic operation, which is expensive in VFL setting as it
involves encrypted communication. As such, we adapt the Fagin’s
algorithm, a famous top-%£ query algorithm, to reduce the amount
of encrypted communication. We deploy our solution VFPS-SM
across five distributed nodes and conduct experiments with 10
datasets and 3 models to evaluate its performance. The results
show that VFPS-SM can reduce the end-to-end running time by
up to 35x, selection time 365x and improve model accuracy by
6.0% compared with state-of-the-art baselines.

I. INTRODUCTION

Creating powerful machine learning (ML) models requires
collecting large-scale and high-quality data. However, data is
often soiled across various organizations, and data sharing is
typically restricted by privacy regulations such as GDPR [1].
As such, many studies have raised intensive attention to
distributed data management and analysis [2]-[4]. Researchers
and data scientists are interested in building ML models
from distributed databases in a privacy-preserving way [5]-
[10]. Motivated by this problem, federated learning (FL) is
a distributed machine learning (ML) scheme, which enables
multiple participants to train models collaboratively while
ensuring data privacy. That is achieved by sharing encrypted
data or intermediate computation results instead of the raw
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Fig. 1. An example of vertical federated learning.

data [4], [11], [12]. According to the data distribution, FL
can be classified into two main scenarios, i.e., horizontal
federated learning (HFL) and vertical federated learning
(VFL). In HFL, each participant holds all features of some data
samples, whereas VFL involves participants holding different
features of the same set of data samples. VFL has attracted
much interest from the database community due to its rich
applications for distributed data management regarding issues
such as tree model [5], [13], [14], data privacy [7], [15]-
[18] and communication efficiency [19]-[22]. In this paper,
we focus on VFL. Fig. 1 shows an example of VFL, where a
bank wants to collaborate with an e-commerce company and
a credit company to train a model to predict the label, i.e.,
whether a customer is involved in financial fraud.

Participant Selection for VFL. To safeguard privacy, typical
VFL systems have to resort to expensive methods such as
homomorphic encryption [14], [15], [23] and secret sharing
scheme [7], [13], [24]. As a result, the scalability and effi-
ciency of VFL systems are significantly constrained by the
number of participants. Moreover, the performance of the
global model in VFL largely depends on the quality of local
data. Training with low-quality data hinders the model from
achieving optimal performance. Therefore, identifying partici-
pants with high-quality data is crucial for efficient and effective
model training. We define this challenge as the participant
selection problem (PSP). Formally, PSP involves selecting
p participants from a total of P to participate to conduct
model training. PSP provides three key benefits. @ It can
identify participants who significantly enhance model quality,
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protecting against hitch-riders and irrelevant participants that
make little or negative contributions (e.g., because of poor
data quality). ® By evaluating participant contributions, PSP
supports a reward system that encourages essential participants
to engage in VFL. @ PSP can also reduce VFL costs by
involving fewer participants since VFL costs increase nearly
linearly with more participants exchanging intermediate results
and gradients during training. In Table I, we select 2 out of the
4 participants to train a logistic regression model on the SUSY
dataset. The results show that the training time is accelerated
by over 3x with only a slight degradation in model accuracy.

Existing Solutions and Their Problems. Typical solutions
for a selection problem consist of two steps, i.e., valuation
and selection [25]-[27]. For PSP, the valuation step quantifies
the contributions of the participants to model accuracy, and
the selection step chooses the p participants with the largest
contribution scores. A natural solution is to use the Shapley
value [28] for valuation due to its nice properties like additivity
and fairness. Specifically, consider a set P with P participants,
and use U(S) to denote the utility (e.g., accuracy) of the
model trained over a subset of participants S C P, the Shapley
value SV (p) quantifies the average marginal contribution of
participant p to all possible subsets of P. That is,

V) =5 Y

SCP\p

P—1\"
("5") weuwen-ve).

Using the Shapley value to solve PSP poses two challenges:
® It requires computing all (2F — 1) combinations for P
participants, each needing individual model training, which
results in a long selection time as evidenced in Table 1. &
Selecting participants with the highest Shapley values may not
optimize model accuracy because they may lack feature diver-
sity. This is because participants with high-score but similar
data may have redundancy. In Fig. 1, the bank and the credit
company have Shapley values of 0.4 and 0.38, respectively,
while the e-commerce company has a value of 0.3. Despite the
bank and the credit company contributing more individually,
pairing them adds limited value to the model since both
primarily provide overlapping personal financial information.
In contrast, pairing either the bank or the credit company with
the e-commerce company, which offers diverse shopping data,
enhances data diversity and improves model accuracy. Beside
the toy example, Table I also shows that the model accuracy
of Shapley is noticeably lower than our solution VFPS-
SM. Besides, VF-MINE [27] groups participants, scores each
based on mutual information, and averages these scores to
assess importance. Although mutual information is cheaper to
compute than the Shapley value, it still cannot consider the
feature diversity among the participants, which is evidenced
by its low model accuracy in Table I. The problems of existing
solutions prompt our research question:

Can we design a solution to PSP that selects diverse
participants for high model accuracy and conducts
the selection process efficiently?

TABLE I
TRAINING TIME AND MODEL ACCURACY FOR THE LOGISTIC REGRESSION
(LR) MODEL ON THE SUSY DATASET. All TRAINS WITH ALL THE
PARTICIPANTS, Shapley AND VF-MINE SELECT PARTICIPANTS USING THE
SHAPLEY VALUE AND MUTUAL INFORMATION, RECEPTIVELY, WHILE
VFPS-SM 1S OUR PROPOSED METHOD.

Party | Selection | Training Total Test
Count | Time (s) Time (s) | Time (s) | Accuracy
ALL 4 0 13503 13503 78.76%
SHAPLEY 2 136103 3881 139984 76.20%
VE-MINE 2 848 3881 4729 76.20%
VFPS-SM 2 372 3866 4238 78.19%

Our Solution VFPS-SM. To solve the research question,
we propose VFPS-SM, which improves model accuracy by
selecting a subset of participants that maximizes data sample
likelihood. We use the KNN classifier as the proxy model
because it is a classic yet simple method that aligns with many
ML models in exploiting the geometric distribution of the data
samples. As such, the likelihood function of the KNN classifier
can be treated as a surrogate of classification accuracy. PSP
is formulated as choosing the participants that maximize
the KNN likelihood function. With extensive derivation, we
establish that this likelihood function is submodular regarding
the participants, a property critical for capturing participant
feature diversity. Submodular functions, as demonstrated in
previous studies [29]-[33], account for the diversity of a subset
of items because its marginal gain from adding an item v to
a group G diminishes as the subset size increases.

Let the utility of a set G be f(G). The contribution
of item v is f(v|G) = f(GUW) — f(G). The utility
function f is submodular if for all A C B C G and
v & B, it satisfies f(v|A) > f(v|B).
To optimize the submodular function, we use a greedy method
for participant selection, which chooses the participant with
the highest marginal gain until reaching a predefined size.

To safeguard data privacy, we employ homomorphic encryp-
tion when implementing the KNN classifier in the VFL setting.
However, this approach introduces substantial computation and
communication challenges due to many encryption operations.
To improve efficiency, we incorporate the Fagin’s algorithm,
which efficiently merge sub-rankings from different partic-
ipants, effectively reducing the required data transmissions.
This strategic use of top-k query algorithms substantially
reduces the encrypted computation and communication over-
head, thereby streamlining the participant selection process
and enhancing overall efficiency. Furthermore, we analyze
the security requirements from three perspectives(i.e., feature
security, label security and identity security) and discuss the
privacy protection capabilities of our VFPS-SM.

We experiment with three popular ML models (i.e., KNN,
LR, and Multi-Layer Perceptron (MLP)) and compare our
VFPS-SM with two baselines (i.e., SHAPLEY, VFMINE).
The results demonstrate that VFPS-SM significantly enhances
efficiency, reducing selection time by up to 365 and cutting
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end-to-end training time by as much as 33x. Additionally,
VFPS-SM improves model accuracy by up to 6.0% by
selecting more diverse participants. To further study the effect
of participant diversity, we incrementally add participants
with replicated data. VFPS-SM effectively identifies these
redundancies, improving model quality, while the baselines
fail to detect duplicates, leading to lower accuracy.
To summarize, we make the following contributions:

e We inspect existing vertical federated participant selection
frameworks and identify significant issues related to high
costs and neglect of diversity.

e We analyze the KNN classifier’s likelihood function and its
submodular properties, proposing a framework VFPS-SM
that addresses PSP with submodular maximization.

e We optimize the KNN implementation in the VFL setting
using top-k query algorithms and employ homomorphic
encryption techniques to safeguard communicated data.

e We extensively evaluate VFPS-SM on various datasets. The
experimental results demonstrate that VFPS-SM can effi-
ciently and effectively select a diverse subset of participants.

II. PRELIMINARIES

In this section, we introduce the basic of vertical federated
learning and submodular maximization.

A. Vertical Federated Learning

Data Layout. Consider a set of P participants: P =
{1,2,..., P}, and there is a dataset of N data samples:
D = {X,Y}. X € RN*F represents the features of all
samples and F' is the dimension of the joint feature space.
Each participant p € P holds a subset of features, denoted by
XP = {2l € RYXF” where FP is the feature dimension
on participant p. In other words, if we collect the feature
vectors from all participants and concatenate them, X will be
reconstructed, i.e., X = [X! ..., X]. Here, [, ..., ] denotes
the concatenation operation. Only one participant called the
leader participant holds the labels Y where Y = {y;} ;.

Privacy Protection Techniques. Data privacy is a funda-
mental aspect of federated learning. Existing FL systems
often employ privacy protection techniques to safeguard the
transmitted data. Below we briefly summarize key techniques
used in FL: @ Differential privacy (DP) generates random
noises, such as Gaussian noise [34], and Binomial noise [35],
to perturb the communicated data. Nevertheless, adding noises
inevitably affects the model accuracy. @ Secure multiparty
computation (SMC) allows multiple parties to compute a
function over their inputs without sending local data. SMC
requires a careful design for each desired operator and the
setup of connections between any two parties, which is costly
in real applications. @ Homomorphic encryption (HE) protects
the data by encryption and allows for various mathematical
operations over ciphertexts, such as addition and multipli-
cation [36]-[38]. HE can maintain the correctness of data
aggregation and provide a strong privacy guarantee, albeit at
the additional cost of encryption and decryption.

TABLE II
THE COMMONLY USED NOTATIONS

Symbol Description
P Participant set with P participants
D Dataset of N samples
X Feature matrix, X € RNV*F
Y Labels, Y = {y,} ¥,
Xp Local features held by participant p
S Subset of participants
£(S) Log-likelihood for subset S
dP Partial distances computed by participant p
d Complete distances by summing dP over P
T k-nearest neighbors set
w(p, s) Similarity between p and s

Therefore, we choose HE to encrypt sensitive data for
privacy protection in this work. We denote the encryption func-
tion as HE.Enc(x), the decryption function as HE.Dec(x),
and the sum operations over encrypted items as HE.Sum/(x).

B. Submodular Maximization

Submodularity is a property that naturally models diversity
with a diminishing return, making it effective for subset
selection across various applications [31]-[33], [39], [40].
Functions with this property are termed submodular functions.

Definition 1 (Submodular Function). Let V be a finite ground
set consisting of n distinct elements. For any subsets A C B C
V), a utility function f : 2¥ — R, assigning a real number to
each subset of V, is called submodular if for all elements
v € V\ B, the following inequality holds:

fRu UA) = f(A) = F{v} UB) — f(B). (D

Submodular function has the diminishing returns property,
where adding an element v to a smaller subset A yields
at least as much benefit as adding it to a larger subset B.
This property naturally encourages diversity by valuing the
addition of diverse elements to a subset while penalizing
redundancy. For optimization, if a submodular function is
monotone (i.e..f(A) < f(B),for A C B) and normalized
(f(@) = 0), a simple greedy algorithm can achieve a 1 — 1
approximation guarantee to the optimal solution [41], [42].
This greedy algorithm adds the most valuable element at each
step, progressively building an increasingly effective subset.

III. THE VFPS-SM FRAMEWORK

In this section, we introduce our proposed framework
VFPS-SM for PSP, grounded in the maximum likelihood
estimation. In particular, we derive the likelihood function of
data sample using KNN as the proxy model and show that
PSP can be modeled as a submodular maximization problem.

A. KNN-Driven Likelihood Maximization

Problem Formulation. We study the participant selection
problem in VFL. Given a consortium P with P participants,
our objective is to find a participant sub-consortium S from the
entire consortium P where S C P, |S| = S and achieve a high
model accuracy on the chosen subset S. In training machine
learning models, estimating maximum likelihood parameters is
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crucial. This process involves identifying parameter values that
maximize the likelihood of observed data for a specific model,
which is typically correlated with maximizing the model’s
accuracy [43]-[45]. Similarly, in addressing PSP, we adopt
maximum likelihood estimation, a fundamental approach in
classical ML models, to frame our solution. Specifically, our
goal is to maximize the likelihood of the data within the subset
S given the ML model, formalized as:

max > _log p(ei, yi 0(S)) )
ieD
where 6 is the maximum likelihood estimate of the parameters
in the ML model. And 6 can be seen as a mapping function
for the KNN classifier since it’s a non-parametric model.

Vertical KNN. For a query sample ¢ = (x4, ¥,), the goal of
KNN in the VFL scenario is to identify the k-nearest samples
in the joint feature space X. In this work, we define the
following two types of distances:

e Partial distance. Each participant p € P calculates the
distances between its local features of x, and data samples
in D, denoted as d? = [(2? — a¥)?, for i € [N]].

o Complete distance. The complete distance d = Zpep dP is
the sum of partial distances over all participants.

Evaluating Subset: A Log-Likelihood Perspective. Given
the model parameter 6(S) when training using subset S, we
consider a log-likelihood set function ¢ : 27 — R that maps
subset S C P to a log-likelihood score on the whole set P:

((8S) = Z log p(z4,yi; 0(S5))
i€D

= Zlogp(xﬂyi; 0(9)) + ZIng(in(S))a

i€D i€D

3)

where p(z;|y;; 0(5)) and p(y;|0(S)) are the generative likeli-
hood and the prior likelihood of the sample i € D.

Objective and Prior Likelihood. Our goal is to select a
participant subset S within the larger consortium P that
maximizes the score ¢. Consider the dataset D comprised of
C distinct label classes. Let N, denote the number of samples
in D with matching labels. The prior likelihood, expressed
as p(y;]0(S)), is thus formulated as &¢, where N represents
the total number of samples within the dataset. Notably, this
prior likelihood is a constant value and remains independent
of the subset S. Hence, the crucial question concerning the
log-likelihood function ¢ is how to appropriately design the
generative likelihood function?

Simplifying the Generative Likelihood. The function
p(2¥]y;;0(S)) represents the probability of observing the fea-
ture values z¥ for a given sample ¢ at participant p conditioned
on the class label y; and the model parameters 6(S). This
probability depends on the subset S used to train the model.
To simplify this function for the KNN classifier, we introduce
the following assumptions:

Assumption 1. For a given sample i, p(z¥|y;;6(S)) can

be reflected by the participant s in S that is closest to the
participant p € P, ie., s = arg,.smaxw;(p,u) where
w;(p, u) is the similarity between p and w.

Assumption 2. Given Assumption 1, the generative likeli-
hood can be expressed as p(a?|y;;0(S)) = cevilPs) =
¢’ exp(maxw;(p, s)).

Assumption 1 indicates that the impact of features % on
model training can be approximated by the most relevant
participant s. It holds not for general machine learning models
but only when using the KNN classifier for likelihood esti-
mation. However, VFPS-SM remains broadly applicable, as
KNN serves as an effective non-parametric proxy that captures
geometric data patterns. Prior works have also leveraged KNN
as a general proxy [46]-[48]. Assumption 2 formulates
the conditional probability using an exponential function of
the similarities. Together, these assumptions emphasize that
only the most relevant participant’s contribution is considered,
minimizing redundancy and enhancing diversity.

Refining Similarity Measurement. Above, we express the
generative likelihood based on participant similarities. Next,
we study how to measure this similarity using data (i.e., partial
distance) during KNN execution? For each ¢ € D, let T denote
its k-nearest neighbors within P, and d- = thzll d? represent
the sum of partial distances for participant p € P, where
df = (a2 — 27)?,t € T. The sum of complete distances for
all participants is dr = Zpep d-. We define the similarity
between two participanptls, Py and po, for one query sample ¢
as wy(p1,p2) = dT*‘ldded I > 0, and the overall similarity
across the dataset as w(p1,p2) = ﬁ > qep Wq(p1,p2). This
similarity measure quantifies the relative difference in aggre-
gated distances from common nearest neighbors, effectively
capturing the divergence in their feature spaces based on spa-

tial relationships and data distribution within the consortium.

Modeling Likelihood With KNN. Building on our founda-
tional assumptions regarding spatial locality and influence,
we utilize the KNN classifier to model the likelihood func-
tion in VFL. These assumptions guide the representation
of the generative log-likelihood, which can be expressed as
log p(«¥|y;; 0(S)) = w;(p, s). The log-likelihood score for a
subset S is thus formulated as:

o(S) = Z Z?eagwi(p, s)+ Zlog% +C

peEP €D i€D

]\/"C (4)

= Z Isneasxw(p, s) + Zlog ~ T C.

pEP 1€D

In this model, the likelihood function is influenced by the
closest participant s in subset S to each data feature in
participant p, which is determined by maximizing the sim-
ilarity measure w(p, s). This approach allows us to capture
the most significant interactions within the data, focusing on
maximizing these values to enhance the overall effectiveness
of the learning process. The constant terms, including the
logarithm of the class occurrences log% and constant C,
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remain invariant regardless of the subset S, simplifying the
optimization task to:

gt

= > maxuw(p,s) )

peP

Consequently, the essence of optimizing ¢(S) narrows down
to leveraging the most significant similarities between par-
ticipants, aiming to maximize the collective impact of these
relationships on the overall model’s performance.

B. Design Rationale

We leverage the nearest neighbors to approximate the data
contribution of participants, a task conceptually similar to
kernel density estimation (KDE) [49]-[51]. KDE is a widely
used technique for estimating the probability density of a data
sample by accounting for the contributions of nearby data
points. KDE is straightforward: the denser the concentration
of data points around a location, the higher the likelihood
of observing a data sample there. This is achieved by using
weighted distances from all observations across a linearly
spaced set of points. Specifically, let X;,..., X, € R? be a
random sample from an unknown distribution P with density
function p. Formally, KDE can be expressed as

po) = Y K ©

where K : R? — R is a non-negative function called kernel
function and h > 0 is a smoothing bandwidth that controls
the amount of smoothing. The kernel function, K (x), specifies
how to compute the probability density given the distance,x —
X;. A commonly used kernel i is the Gaussian kernel, which is
expressed as K(z) = \/%e 2% Let q denote a query data
sample and 7 C {1,2,--- , N} represent the indexes of ¢’s
k-nearest neighbors in the dataset D. The likelihood of ¢ using
a Gaussian kernel over consortium P can be expressed as

plag) = cexp (Y ~llag — i)

€T

= cexp ( Z—qu prH )
€T peEP

=cexp(Y_ (Y ~llap —2lII)),
pEP €T

where ¢ is a constant, xf is the feature of sample z; on
participant p (by filling in O for the missing features), and
similarly for z?. Taking the logarithm on both sides and
ignoring the constants, we have

log p(zq) = 3 (3" ~llaf - a7[1?)
pEP €T (8)
=D ~dy, where dy = |laf — af|%.
pEP €T

Connection between KDE and QOur Design. Our goal is
to select a subset S C P that maximizes the log-likelihood
score £(S). In essence, the selected subset S should aggregate

likelihoods in a way that approximates the full aggregation
across the entire consortium P . We define a mapping o :
P — &S such that the partial log-likelihood information from
participant p is approximated by a selected participant o (p) =
s €S.ForseS, letts = {p e Plo(p) = s} be the set of

participants approximated by participant s and v, = |Us|. The
full aggregated log-likelihood can be written as
Sodb =Ny - a5+ a5 )
peEP peEP
=3[ - dT P+ yads (10)
peEP seS

By subtracting the second term from both sides, taking the
norms, and applying triangular inequality, we can get an upper
bound on the error of estimating the full log-likelihood by S

1> S dh = yedi | <> lld- (11

peP seS peEP

dU(P)

The right-hand side is the error on approximating the full
log-likelihood using the selected subset of participants S. The
above inequality holds for any feasible mapping o since the
left-hand side does not depend on o. We take the minimum
of the right-hand side w.r.t. o(p),Vp € P,

1Y = vdy < Z min |d7 — d7 |-
pEP seS

The objective for minimizing the approximation error

P s
> min [l — di]| (12)
peEP

can be equivalently expressed as:

> maxdr — 1 2 wip, s). (13)
peEP

For a discarded participant p due to participant selection,
Assumption 1 says we approximate d’- using the contribution
of another participant s (i.e., d%—), where s is selected as
s £ arg,.smaxw(p,u). That is, we select the participant
s that yields the smallest approximation error for discarded
participant p. This is also the best estimation we can get using
the available information after participant selection.

C. K-Nearest Neighbors Submodular Function

Let f(S) = > ,cpmaxsesw(p,s). Our analysis trans-
forms PSP into maximizing f(S). Below, we will demonstrate
that the KNN likelihood function f(.5) is submodular and
discuss how to perform submodular maximization.

Theorem 1. The function f is a normalized, monotone
submodular function.

Proof. Let P be a finite ground set with elements p, and let
S be a subset of P. The weight function w : P x P — R
assigns a real number weight to each pair of elements (p, s),
where both p and s belong to P. We consider the set function
f : 2P — R, defined for any subset S C P as f(S) =

S ep maxses w(p, 5).
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Monotone. Given subsets A and B such that 4 C B, for
each p € P, the maximization operation within f ensures
that maxse 4 w(p,s) < maxsep w(p,s) due to the broader
or equal choice set in B compared to .A. Summing these
maximum values over all p in P yields f(A) < f(B),
demonstrating that f is monotone.

Normalized. For S = (), there are no elements s to consider,
implying for all p € P, max,cg w(p, s) contributes no value.
Thus, f(0) = >_,cp0=0.

Submodular. For subsets A, B where A C B, and an element
x ¢ B, we examine the marginal gains f(AU {z}) — f(A)
and f(BU{z}) — f(B) through two cases for each p € P:

Case 1: If w(p,z) is less than or equal to the maximum
weight in both A and B for some p, then adding = does not
change the maximum weight for p. Thus, x contributes no
additional value, and the marginal gains for both .4 and B are
zero for this p.

Case 2: If w(p, z) exceeds the current maximum weight for
p in A or B, then we consider:

o If w(p,z) > maxseq w(p,s), the marginal gain for A is

w(p, ) — maxgse 4 w(p, s).

e Similarly, if w(p,x) > maxsecpw(p, s), the marginal gain
for B is w(p, ) — maxsep w(p, ).
Given that A C B, it follows maxseqw(p,s) <
maxsep w(p, ), implying the marginal gain for adding z to
A is at least as large as the gain for B. Combining both
cases, we conclude that for every p € P, the inequality
fAU{z}) = f(A) > f(BU{x})— f(B) is satisfied, proving
f’s submodularity. O

The submodularity of function f is crucial as it ensures that
adding participants to a smaller subset .S yields a greater or
equal utility gain than to a larger subset, efficiently addressing
diminishing returns. Since f is submodular, we effectively
transform the vertical federated learning participant selection
into a problem of maximizing the KNN submodular function.

A Greedy Optimization Algorithm. We aim at finding a
subset S C P that maximizes f(S) subject to |S| < S.
Obviously, finding the optimal solution to this problem is NP-
hard. To achieve practical performance, we utilize the greedy
algorithm to optimize the submodular function in polynomial
time, with a 1 — é approximation guarantee to the optimal
solution [41], [42]. This greedy algorithm for maximizing
the k-nearest neighbors submodular function f starts from
S = () and adds one participant r € P\S with the greatest
marginal gain to S in each step, where the marginal gain of
ris f(SU{r}) — f(S). We provide the pseudocode of this
greedy algorithm in Algorithm 1.

IV. IMPLEMENTATION

After formalizing VFPS-SM, we next study how to effi-
ciently run the KNN oracle in our framework. We present two
implementations: a baseline, which helps identify system bot-
tlenecks, and an optimized version that employs top-k query
algorithms to improve both computation and communication
efficiency in vertical federated KNN.

Algorithm 1 Greedy Maximization

. Input: Submodular function f : 27 — R
: Output: Subset S C P satisfying |S| = S
:S=10 > Initialize an empty set S
while |S| < S do > Repeat until size of S reaches S
reP\S > Select elements r not in S
r € argmax[f(SU {r}) — £(S)
> Choose r* with maximum marginal gain
S=SuU{r*} > Add the selected element r* to S
8: end while

=~

A. The Baseline Implementation

Below, we outline the straightforward implementation of
vertical federated KNN using HE, focusing on KNN-based
submodular maximization involving multiple query data pairs.
For a given query set @ C D, our goal is to calculate the
similarity w(p, s) for each participant pair p and s in P based
on Q. These similarities then guide participant selection via
the greedy algorithm in Algorithm 1.

System Architecture. There are three roles in the system—key
server, aggregation server, and participants.

e Key Server. The key server generates a HE key pair consist-
ing of a public key pk and a private key sk. It distributes
pk to all participants and the aggregation server, while sk
is securely sent to the leader participant.

o Aggregation Server. The aggregation server runs indepen-
dently and provides the mathematical operators (e.g., Sum)
that securely aggregate the encrypted data from participants.

e Participants. Each participant holds a feature subset of all
instances and communicates with the aggregation server,
while a leader participant holds the instance labels.

Execution Workflow. For each query sample ¢ = (z4,yq)
in Q, each participant p € P calculates the partial dis-
tances dP, which are then encrypted using a public key:
[dP] = HE.Enc(dP,pk) and sent to the aggregation server.
The server then aggregates these encrypted partial distances
into the complete distances [d] = HE.Sum([dP],pk) and
forwards them to the leader participant. The leader decrypts
these distances, identifies the k-nearest neighbors 7, and
shares 7 with all participants. Each participant p computes
the sum d- = >, d}, and sends d’- back to the leader
to determine the similarity w, = %ﬁﬂi%”. After pro-
cessing all queries, the leader computes the overall similarity
w(p,s) = I—él > 4co Wq(p, s) for each participant pair p and
s. These similarities are then used in a greedy algorithm to
select the participant sub-consortium S from P.

Cost Analysis. We assume the cost of calculating a partial
distance is denoted as 3, the cost of encrypting/decrypting
a partial distance as ¢./¢4, the cost of transmitting a data
item as 7, and the cost of adding two encrypted distances as
v, the cost of adding two plaintext distances as 4. On each
participant, the computation cost is O(kd + N (S + ¢.)), and
the communication cost is O(k(n+ PS) + N(¢q + 1+ P7)).
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instances’ partial distances for a query sample, which becomes
costly with large-scale datasets due to the high expense of HE
operations. The computation and communication cost scale
with the number of samples N. This leads us to consider:

Can we avoid encrypting all the instances’ partial
distances and ensure correctness meanwhile?

We observe that the vertical federated KNN can be framed as
a problem of multi-party top-k query where each party holds
a ranked list of scores for the same data samples. To identify
the top-k samples with the highest or lowest scores across
multiple parties, it’s necessary to merge these local ranked
lists into a global ranking. Top-k query algorithms like Fagin
and Threshold [52]-[55] can effectively identify the k-nearest
neighbors across multiple parties, addressing the vertical KNN
challenge. Thus, we propose to use a top-k query algorithm
to find the k-nearest neighbors efficiently.

Top-k Query Algorithms. Assume that there are P parties
and N instances, and each party p € [P] holds a data series
(24, sp(x;))] where i € [N], and sp(z;) represents the score
of instance ¢ on party p. The instances at each party are
sorted by their scores to form a ranked score list. Globally,
an overall score is assigned to each instance by aggregating
the scores from all parties using an aggregate function. The
partial distances between the participants’ local features and
the query can be seen as the scores of the instances. Each
participant sorts the partial distances locally and generates a
ranked list of identities (IDs). The aggregation server employs
the top-k query algorithm to identify the top-k (minimal-k)
instances across all participants. Note that the partial distances
are sorted in ascending order.

Choice of Top-k Query Algorithm. In this work, we utilize
the Fagin algorithm, widely recognized in the literature [52],
[53]. Note that our VFPS-SM also supports other top-k query
algorithms. Fagin assumes a monotone aggregate function:
F(z1,...,zp) < F(x},...,2%) whenever z; < x} for all 1.
The Fagin algorithm involves three main steps: 1) sequentially
access all the sorted lists in parallel until k£ instances appear
in all lists; 2) perform random accesses to obtain the scores
of all seen instances (including those instances that have not
occurred in all lists); 3) compute the global scores with the ag-
gregate function for all candidates found in the previous step,

Fig. 3. The optimized workflow of VFPS-SM.

and return the top-k instances. Fig. 2 illustrates an example
of identifying the minimal-2 instances from ascending ranked
lists of 3 participants. First, Fagin’s algorithm sequentially
scans the lists until finding two instances that appear in all
the 3 lists (i.e., X; and X3). Next, the algorithm retrieves and
aggregates the scores of all the encountered instances (marked
with blue shade in Fig. 2) across the 3 lists (X7, Xo, X3, X4).
Finally, it sorts these instances based on their aggregated
scores and selects the minimal-2 instances (i.e., X7 and X5).

Assume an instance A with the scores (s1(A),...,sp(A))
was not seen, and the instance B with the scores
(s1(B),...,sp(B)) is one of the candidates returned by the
Fagin algorithm. Since s,(A) < s,(B) for all p € [P], we can
assure that F'(si1(A),...,sp(A)) < F(s1(B),...,sp(B)).
This establishes the correctness of the Fagin algorithm.

Execution Workflow. We employ the top-k query algorithms
to boost efficiency by narrowing down the set of candidate
samples for encryption and analysis. Taking Fig. 3, initially,
participants shuffle all samples using a consistent seed and
generate pseudo IDs I’ mapped back to the original IDs I. For
each query ¢ € Q, each participant p € P computes the partial
distances dP between ¢ and local features XP, and sorts dP in
ascending order to create sub-rankings of pseudo IDs [ 1’7. Then
participant p sends I, ; to the aggregation server in a mini-batch,
that is, each participant iteratively sends b pseudo IDs to the
server until Fagin terminates (Step @-®). The server employs
Fagin’s algorithm to identify the top-k candidate pseudo IDs
I; from all sub-rankings (Step®). Then participants remap the
top-k pseudo IDs I}, back to the original IDs I, and encrypt the
corresponding partial distances [d’;k] (Step@). The following
steps are similar to the baseline method (Step ®-®). As we
will show, the candidate set ,’g is smaller than the training set,
optimizing the encryption and computation load.

Cost Analysis. Assume the top-k query algorithm needs
to sequentially scan n rows until s pseudo IDs have been
seen in all participants. The computation and communication
costs of the Fagin phase are both O(n). There are at most
C = min(Pn — Ps,N) unique candidates seen so far.
Therefore, the computation cost for the following steps is
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at most O(kd + C(B + ¢.)), and the communication cost
is at most O(k(n + P&) + C(B4 + n + P7)), based on our
definition in Section IV-A. HE operations are known to be
time-consuming. As we will empirically demonstrate later,
the costs of the baseline implementation can be inefficient
in practice, particularly in many large-scale scenarios. In
contrast, our optimized method via top-k query algorithms can
effectively mitigate this performance bottleneck.

C. Security Analysis

Following existing VFL systems [7], [13], [14], [17], [27],
we analyze the security of VFPS-SM from three perspec-
tives: feature security, label security, and identity security.
We consider the semi-honest model, a commonly used threat
model in FL [15], [22], [56]. That is, each party follows
the protocol but it tries to speculate on others based on the
received data. Note that there is no collusion between the
server and participants; otherwise, the aggregation server can
decrypt anything it receives from the participants.

e Feature Security is protected against any malicious party.
In our framework, since the local features are not directly
shared, each participant only transmits the encrypted partial
distances to other parties. Existing studies on attacking
VFL [57]-[59] assume the server may steal the participant
model and data by generating synthetic data samples to
query the participant model for data reconstruction. This
kind of attack does not work for our proposed VFPS-
SM because (i) we do not allow any party to query the
participants with new data samples, and (ii) even if some
parties get the partial distance, using it to reconstruct the
participant data features is an under-constrained problem
(i.e., using 1 dimension distance to guess high dimension
features), which can not provide meaningful solutions.

e Label Security is maintained if the leader does not collude
with other participants. The leader maintains the labels and
never shares them with others. If the leader does not collude
with others, the curious or colluding participant cannot
speculate the labels. However, if the leader colludes with
others, the colluding participants can directly get the labels.

e Identity Security is protected against any malicious party.
Since the original IDs of instances are shuffled and replaced
by “pseudo” IDs, identity security is guaranteed against the
server. Moreover, participants use the same pseudo IDs, so
even if they collude, they cannot access or decipher the
original identities, preserving identity security.

D. Limitation of VFPS-SM

In this work, we propose VFPS-SM, which is the first
framework focused on the diverse participant selection in VFL.
Although our VFPS-SM works well on many workloads, one
limitation of VFPS-SM is that its contribution scores cannot
be used to reward the participants and encourage them to join
model training. This is because VFPS-SM evaluates partic-
ipant contributions based on submodularity, and submodular
functions assign diminishing returns for the participants that

TABLE III
EVALUATED DATASETS

Datasets # Instances # Features Domain
Bank [27] 10,000 11 Finance
Credit [6] 30,000 23
Phishing [19] 11,055 68 Internet
Web [15] 64,700 300
Rice [61] 18,185 10
Adult [4] 32,561 123 Science
TIJCNN [40] 141,691 22
SUSY [14] 5,000,000 18
HDI [60] 253,661 21 .
SD [60] 991,346 23 Healthcare

are selected later. This causes fairness problems as the contri-
butions (and thus rewards) are biased towards the participants
selected earlier. We leave solving this problem for future work.

V. EXPERIMENTAL EVALUATION

We detail the experimental settings in Section V-A, compare
VFPS-SM with state-of-the-art baselines in Section V-B,
discuss additional results that evaluate VFPS-SM’s design in
Section V-C, and conduct an ablation study in Section V-D.

A. Experiment Settings

Datasets and Models. The evaluated datasets in our study are
listed in Table III. These datasets are collected from online
repositories [60], [61] and prior works [27], [62], [63]. Each
dataset is randomly partitioned into a training set (80%), a
validation set (10%), and a test set (10%). We randomly split
each dataset into four vertical partitions based on the number
of features, and put each partition on one physical machine.

To validate the effectiveness of VFPS-SM, we run several
downstream classification tasks over the selected participants.
We choose k-nearest neighbors(KNN), logistic regression
(LR), and multi-layer perceptron (MLP) as the representative
machine learning models.

Baselines and Metrics. We compare VFPS-SM with the
following baselines: @ RANDOM: randomly selects [ partic-
ipants; @ SHAPLEY: selects [ participants with the highest
values calculated via a vertical federated KNN proxy model;
® VF-MINE [27]: computes participant importance based on
mutual information and selects the top-I; @ VFPS-SM-BASE: a
direct implementation of vertical federated KNN. We evaluate
our VFPS-SM using two key metrics: model accuracy and
end-to-end running time cost. The model accuracy is measured
by the performance of the trained model over the test dataset.
The end-to-end running time cost includes both participant se-
lection time and model training time. The results are averaged
over five runs for robustness and reliability.

Implementation. We use the Numpy and PyTorch libraries
for data loading and tensor operations. For communication
between parties, we implement RPC communication using
proto3 and gRPC. We utilize the Cheon-Kim-Kim-Song
(CKKS) scheme provided by TenSEAL [38] to implement
homomorphic encryption We adopt the Adam optimizer [64]
as the optimization algorithm for LR and MLP. We set the
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TABLE IV
TEST ACCURACY ON DIFFERENT DOWNSTREAM TASKS. THE HIGHEST AND THE SECOND HIGHEST ACCURACY AMONG RANDOM, SHAPLEY,
VFMINE, AND VFPS-SM IS HIGHLIGHTED IN BOLD AND UNDERLINED, RESPECTIVELY.

Task Method Bank Phishing Rice Credit Adult Web IJCNN HDI SD SUSY
ALL 0.8300 0.9483 0.9911 0.8111 0.8167 0.9883 0.9833 0.9250 0.7111 0.7844
RANDOM 0.7833 0.8738 0.9789 0.7856 0.7767 0.9800 0.9100 0.9083 0.6678 0.7422
KNN SHAPLEY 0.8400 0.9336 0.9900 0.8267 0.8500 0.9900 0.9844 0.9164 0.7089 0.7722
VFMINE 0.8100 0.9335 0.9889 0.8100 0.7900 0.9900 0.9289 0.9083 0.7111 0.7544
VFPS-SM 0.8400 0.9369 0.9911 0.8244 0.8500 0.9917 0.9811 0.9167 0.7156 0.7756
ALL 0.8156 0.9360 0.9882 0.8115 0.8463 0.9866 0.9197 0.9075 0.7263 0.7876
RANDOM 0.7920 0.8660 0.9820 0.7835 0.8168 0.9796 0.9021 0.9027 0.6760 0.7140
LR SHAPLEY 0.8153 0.9127 0.9865 0.8102 0.8388 0.9813 0.9072 0.9062 0.7057 0.7620
VFMINE 0.8006 0.9047 0.9876 0.7983 0.8306 0.9810 0.9048 0.9061 0.6952 0.7620
VFPS-SM 0.8156 0.9145 0.9875 0.8109 0.8388 0.9815 0.9075 0.9064 0.7067 0.7819
ALL 0.8595 0.9418 0.9889 0.8062 0.8415 0.9883 0.9570 0.9082 0.8205 0.8011
RANDOM 0.8006 0.8696 0.9786 0.7785 0.8188 0.9782 0.8878 0.9061 0.7893 0.7563
MLP SHAPLEY 0.8367 0.9196 0.9879 0.8188 0.8365 0.9822 0.9337 0.9063 0.7995 0.7908
VFMINE 0.8256 0.9063 0.9883 0.7921 0.8273 0.9830 0.9160 0.9061 0.8075 0.7786
VFPS-SM 0.8367 0.9270 0.9887 0.8190 0.8365 0.9830 0.9461 0.9067 0.8070 0.7932

TABLE V

END-TO-END RUNNING TIME ON DIFFERENT DOWNSTREAM TASKS (SECONDS). THE FASTEST AND THE SECOND FASTEST RUNNING TIME AMONG
RANDOM, SHAPLEY, VFMINE, AND VFPS-SM ARE HIGHLIGHTED IN BOLD AND UNDERLINED, RESPECTIVELY.

Task Method Bank Phishing Rice Credit Adult Web IJCNN HDI SD SUSY
ALL 205 296 522 1460 1800 6254 15018 21849 69612 306055
RANDOM 108 149 337 770 958 954 6509 10984 48531 200140
KNN SHAPLEY 517 669 978 1648 1963 2721 9692 17291 75476 336244
VFMINE 218 252 440 881 1077 1104 6660 11448 49221 200989
VFPS-SM 135 174 361 798 989 997 6551 11113 48738 200513
ALL 181 1981 1222 473 527 2077 2523 1790 6916 13503
RANDOM 116 1622 789 203 328 836 497 1056 3917 3881
LR SHAPLEY 525 2353 1502 1076 1220 2746 3677 7400 30862 139984
VFMINE 225 1830 929 311 559 1058 646 1539 4607 4729
VFPS-SM 143 1436 742 235 471 736 541 1149 4124 4238
ALL 1058 1977 1132 2350 4646 5600 16297 12801 169791 846668
RANDOM 430 1081 729 1274 1758 4459 8140 6671 41741 460684
MLP SHAPLEY 846 2055 1465 1901 2735 6414 16425 13054 68663 591072
VFMINE 545 942 788 1807 1901 4469 5880 6944 42848 462359
VFPS-SM 465 876 722 1132 1810 4444 5489 6930 42169 463324

batch size to 100 and terminate the training of models after 200
epochs or when the validation loss does not decrease within
5 consecutive epochs. To tune the optimal learning rate, we
conduct a grid search within the range {0.001,0.01,0.1}. All
experiments are conducted on Amazon AWS, with each party
deployed on separate g4dn.xlarge EC2 GPU instances.

Hyper-parameter Settings. We implement downstream ML
models using a split learning framework: @ MLP: The model
has 3 layers and is partitioned into two parts: a 1-layer bottom
model on the participants and a 2-layer top model on the
server. The dimensions of the hidden layers are the same
as the input feature, and the activation function is ReLU. @
LR: Each participant maintains a single linear layer, and the
server aggregates the outputs of the participant by summing
them. @ KNN: Each participant computes the partial distances,
and the server aggregates them into the complete distances
to identify the top-k£ neighbors. To protect data privacy, we
employ homomorphic encryption to secure the transmitted

data, which include participant-side model outputs for LR and
MLP and partial distances for KNN.

B. Main Results

Table IV and Table V report the test accuracy and end-to-
end running time for three downstream models respectively.
Comparison to Participant Selection Baselines. We em-
pirically study the first question: can VFPS-SM outperform
the other participant selection baselines in both effectiveness
and efficiency? Selecting 50% participants (2 out of 4) for
downstream classification, RANDOM is the fastest but sacri-
fices accuracy. SHAPLEY is the slowest and computationally
demanding due to requiring extensive retraining across all par-
ticipant subsets which may hinder its real-world applicability.
VE-MINE is the second slowest since it needs to compute
the mutual information for different participant groups. In
contrast, VFPS-SM is marginally slower than RANDOM but
significantly outpaces both SHAPLEY and VF-MINE. For
example, on the SUSY dataset with the LR model, VFPS-
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choose participants. The y-axis is the selection time in seconds.
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Fig. 5. VFPS-SM vs. the baselines in terms of training time on the model MLP. The y-axis is the training time in seconds.

SM is 33.0x faster than SHAPLEY, 1.1x faster than VF-
MINE, and only 1.1x slower than RANDOM in running time.
Additionally, VFPS-SM often achieves higher accuracy, like
on the IJCNN dataset with the MLP model, where it surpasses
SHAPLEY by 1.2%, VF-MINE by 3.0%, and RANDOM by
5.8%, thanks to selecting more diverse participant subsets
which enhance the performance of downstream models.

Comparison to All-Participant Training. Then we turn to
another question: does participant selection yield advantages
compared to training with all participants? The results of
end-to-end running time using all participants (“ALL”) are
presented in Table IV and Table V. Overall, the end-to-end
running time of VFPS-SM is much faster than using all par-
ticipants, which does not have a selection phase. Meanwhile,
training a model on a selected subset of participants can obtain
similar accuracies compared to ALL. For example, on the
Rice dataset with the LR model, VFPS-SM demonstrates a
1.65 x speedup in running time, with only a marginal reduction
(0.07%) in the model accuracy. Interestingly, on some datasets
we even observe a higher accuracy after participant selection
compared to the full-fledged training. For example, on the
SD dataset with the KNN model, VFPS-SM achieves a
0.45% increase in model accuracy to ALL while exhibiting
a 1.4x improvement in running time. Similarly, on the Credit

dataset with the MLP model, using the MLP model, VFPS-
SM realizes a 1.3% increase in model accuracy compared to
ALL. This suggests that certain participants may negatively
impact model quality, highlighting the importance of select-
ing high-value and diverse participants. These experimental
results underscore the effectiveness and efficiency of strategic
participant selection in enhancing model performance.

Time Breakdown. We further decouple the running time
into selection phase and training phase. The selection time
is depicted in Fig. 4 and the training time of MLP is shown
in Fig. 5. © Selection Time: Our proposed VFPS-SM sub-
stantially reduces participant selection costs across all datasets
compared to VF-MINE and SHAPLEY. VFPS-SM utilizes
less time for HE operations by handling fewer instances,
leading to significant speed improvements. For example, on the
SUSY dataset, VFPS-SM achieves a speedup of 365.2 x rel-
ative to SHAPLEY and 2.3 x to VF-MINE. The performance
gains come from the top-k algorithm’s efficient ranked-list
merging and batched candidate processing. @ Training Time:
Training with a sub-consortium of participants significantly
reduces the time required versus full consortium (“ALL”)
across all datasets, mainly due to reduced communication costs
from fewer participants in VFL. For example, on the [JCNN
dataset, training with a participant sub-consortium selected
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Fig. 6. Study of participant diversity. The x-axis represents the number of
manually injected duplicate participants, while the y-axis shows the accuracy
of the KNN model. The initial consortium size is four, and two participants
are selected from the consortium for evaluation.

by VFPS-SM achieves a 3.0x speedup over training with
all participants. Meanwhile, VFPS-SM °’s selection time is
markedly shorter than the full training duration. For example,
on the SUSY dataset, VFPS-SM °’s selection time is 372 s
compared to the full training time of 8.47 x 10° s.

C. More Experimental Results

Study of Diversity. To assess the impact of participant di-
versity, we experiment with the Phishing, and Web datasets,
initially split into four partitions and then augmented with
duplicate partitions. As shown in Fig. 6, using KNN as the
downstream model, SHAPLEY and VF-MINE show decreased
accuracy with additional duplicates, while VFPS-SM main-
tains almost the same model accuracy. For example, with up
to four duplicate participants on the Phishing dataset, VF-
MINE and SHAPLEY’s accuracies drop by 3.03% and 5.01%
respectively, while VFPS-SM improves by 0.34%. VFPS-
SM leverages submodular maximization to prioritize diversity,
effectively identifying duplicates and boosting model quality.

Scalability Evaluation. To study the scalability performance
of our framework and the baselines, we partition Phish-
ing, and Web datasets into varying numbers of partitions
(4/8/12/16/20). Fig. 7 reports the running time of SHAP-
LEY, VF-MINE, and VFPS-SM. As expected, SHAPLEY’s
running time increases nearly exponentially with the number
of participants, as each additional participant doubles the
required coalition evaluations. Similarly, VF-MINE’s running
time exhibits a slight exponential increase, due to its pairwise
mutual information computations across growing participant
sets. In contrast, VFPS-SM consistently outperforms the base-
lines across all datasets and partition scenarios by evaluating
only one group, the entire consortium. This demonstrates the
superior scalability of our VFPS-SM when increasing the
number of participants, compared to the existing methods.

Impact of ik for the KNN classifier. To further study the
impact of k£, we conduct experiments on the Phishing and Web
datasets with varying k. As shown in Fig. 8, after a certain
threshold (k > 10), increasing & further has a minimal impact
on performance. This is because the likelihood estimation
becomes stable due to the aggregation of enough data samples.
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Fig. 7. Scalability evaluation. The x-axis is the number of participants, and
the y-axis is the algorithm’s running time.
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Fig. 8. Impact of k. The x-axis is the number of nearest samples identified
in VFPS-SM, and the y-axis is the model test accuracy.

D. Ablation Study

Below, we conduct ablation studies to compare the perfor-
mance of VFPS-SM-BASE and VFPS-SM.

Number of Candidates. In Fig. 9, we report the average
number of data instances that are encrypted and communicated
for each query instance in our experiments. VFPS-SM-BASE
must encrypt partial distances for all training instances per
query, incurring substantial computational and communication
costs, especially for large-scale datasets. In contrast, VFPS-
SM employs top-k query to select candidate subsets, signifi-
cantly reducing these overheads. As we can observe in Fig. 9,
VFPS-SM with the optimization of top-k£ query can greatly
reduce the number of candidate instances involved in the pro-
cessing procedure on all datasets. For example, compared to
VFPS-SM-BASE, VFPS-SM decreases the average number
by 46.0x on the SUSY dataset and 24.5x on the Rice dataset.

Selection Cost. We also compare the selection time of the
two methods. As illustrated in Fig. 4, VFPS-SM consistently
outperforms VFPS-SM-BASE. In resonance with the compar-
ison of candidate instances, VFPS-SM takes a much shorter
time in terms of encryption, decryption, and communication.
The reason is that, in VFPS-SM, each participant handles
much fewer instances and transfers fewer partial distances. On
the large-scale datasets, our VFPS-SM achieves a remarkable
reduction of cost through system efficiency optimization. For
instance, in terms of the selection time, our VFPS-SM sur-
passes VFPS-SM-BASE, achieving a speed improvement of
8.9x on the SD dataset, and 25.0x on the SUSY dataset.
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Fig. 9. Ablation study on the effect of the top-k query algorithm. The y-axis shows the average number of encrypted and communicated samples per que

VI. RELATED WORK

Vertical Federated Learning. VFL stands out as a promis-
ing paradigm for privacy-preserving collaborative learning,
wherein different parties share a common sample space while
retaining distinct feature spaces. In particular, Hardy et al. [65]
and Cheng et al. [66] propose solutions for logistic regression
and gradient boosted decision trees on vertically partitioned
data, incorporating homomorphic encryption for enhanced data
privacy. Yang et al. [67] extend this framework by adopting the
quasi-Newton method to reduce communication costs. Inspired
by split learning, Vepakomma et al. [68] and Wu et al. [69]
introduce model-splitting concepts to support more complex
deep neural networks in VFL settings. Previous works also
studied other settings in VFL, e.g., how to align the data
among different parties [70], how to reduce the number of
samples required for training in VFL [71], how to adopt
asynchronous training [72], and how to defend against attacks
in VFL. In this work, we aim to effectively and efficiently
select representative participants to enhance VFL performance.

Participant Selection in Federated Learning. Participant
selection is essential for fast and accurate FL. Many studies
have focused on developing strategies for horizontal federated
learning (HFL) [73]-[75] to enhance efficiency, fairness, and
model performance. Some works exploit submodularity to
select representative participants in HFL [31], [76], [77]. For
example, Zhang et al. [78] define the contribution of a subset
based on the expected generalization error and optimize the
selection problem with a constant approximate ratio. More
recently, research has started to focus on selection regarding
the contribution of each participant to the trained model. The
Shapley value is a fair metric for contribution evaluation,
which has been widely used in machine learning [23], [46],
[79]. For example, Jia et al. [80] propose KNN-Shapley, a
data valuation framework that leverages KNN as a proxy
model to compute the Shapley value of each data sample in
centralized ML. The concept of Shapley value was introduced
into HFL to measure participant contributions, incentivizing
engagement [81]. Sun et al. [82] propose a client sampling
strategy based on the Shapley value and aggregate model

updates accordingly to enhance the model’s robustness.
However, participant selection in VFL remains less explored
compared to HFL. Unlike in HFL, where participants train
locally, a single participant in VFL cannot access the full
feature space. As a result, computing the loss and gradient
for a single data requires collaboration and communication
with other parties, adding complexity to the selection process.
Wang and Dang et al. [25] apply Shapley values to assess
contributions in vertical federated linear regression, although
this method is resource-intensive due to repeated model train-
ing. Jiang et al. [27] use mutual information to identify key
participants in VFL. Huang et al. [83] utilize a sampling
strategy based on VFMINE to reduce the costs of computation
of mutual information, although often at the expense of model
precision. Unlike prior contribution-focused approaches, we
prioritize selection diversity to boost model performance.

VII. CONCLUSION

We identify high costs and overlooked diversity in existing
participant selection algorithms. To address both challenges,
we introduce VFPS-SM, a framework that can efficiently
and effectively select a participant subset in VFL. VFPS-
SM approaches PSP by maximizing data sample likelihood
within chosen subsets, using the KNN classifier as a proxy.
Our analysis confirms the likelihood function’s submodularity,
enhancing participant diversity in the selection process and
allowing for a greedy algorithm that maximizes each selec-
tion for optimal gain. Additionally, VFPS-SM employs top-
k query algorithms, reducing encrypted communication and
computation burdens. Experiment results show that VFPS-
SM can reduce participant selection time and provide strong
performance across various ML models and datasets.
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