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ABSTRACT
Vertical federated learning (VFL) trains models when multiple
databases (a.k.a participants) hold di"erent features of the same set
of samples. By quantifying each participant’s contribution to model
training, data valuation can prevent hitch-riders and reward the
instrumental parties. However, vertical federated data valuation
(VFDV) is challenging because it needs to be accurate and e#cient
while protecting participant data privacy. In this paper, we propose
a method meeting all three requirements by using projection and
sampling formutual information estimation (thus dubbed PS!MI). In
particular, we !rst show that the utility of a participant set (a.k.a a
coalition) can be expressed as the mutual information (MI) between
their features and the target labels. MI is favorable because it does
not depend on the model to train (i.e.,model-agnostic) and can be es-
timated via 𝐿-nearest neighbor (KNN). To run KNN, instead of using
costly homomorphic encryption to protect data privacy, we apply
simple random projection to participant features before distance
computation. We prove that random projection ensures di"erential
privacy and preserves unbiased distance estimates. Since the contri-
bution of a participant involves many coalitions, we adopt strati!ed
sampling to reduce the number of coalitions while controlling es-
timation variance. To further improve e#ciency, we incorporate
optimizations including using locality sensitive hashing (LSH) to
prune kNN candidates, batching kNN candidate checking for multi-
ple coalitions, and adaptive early termination for utility evaluation.
We compare PS!MI with 5 state-of-the-art VFDV methods. The
results show that PS!MI yields higher accuracy and shorter running
time than the baselines, and the maximum speedup can be 592→.
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1 INTRODUCTION
“Data is the new oil" — large-scale, high-quality training data is the
foundation of performant machine learning (ML) models. How-
ever, in many practical scenarios, the training data is distributed
across multiple parties and cannot be shared due to regulatory re-
strictions [49, 52]. To tackle this problem, federated learning (FL)
coordinates multiple parties to collaboratively train ML models
while protecting data privacy. Based on the distribution of training
data, FL can be categorized into two main types, i.e., horizontal
federated learning (HFL) and vertical federated learning (VFL). In
HFL, di"erent parties hold di"erent data samples but share the
same feature space, while in VFL, all parties have the same set of
data samples but hold di"erent features. In this paper, we focus on
VFL since it has attracted research interests from the database com-
munity on topics such as e#cient training [14, 34, 57], data privacy
protection [15, 36, 59], and communication optimization [13, 17, 35].
Vertical Federated Data Valuation (VFDV). In VFL, some parties
may hold features that are informative for the model predictions
(e.g., the classi!cation labels) while the other parties may not. VFDV
quanti!es the contribution of (the data from) each party to model
training and can serve multiple purposes. ✁ It can protect against
hitch-riders or malicious attackers, which contribute low-quality
or irrelevant data. ✂ It allows to give quantitative rewards to the
parties according to their contributions such that instrumental
parties are encouraged to participate. ✃ We can select only the
instrumental parties for model training to improve e#ciency.
Existing Solutions and Their Limitations. Early researches use
heuristic methods for VFDV [22, 24, 31]. They cannot model the
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marginal contribution of a party w.r.t. the other parties and fail
to ensure fairness when evaluating the contributions of di"erent
parties. In contrast, derived from cooperative game [48], the Shapley
value (SV) is widely recognized as a fair and principled metric
of contribution evaluation. In particular, the SV of a participant
(a.k.a party) is de!ned as its average marginal contribution over all
possible subsets of the other participants. Formally, consider a set
P with 𝑀 participants, and use 𝑁 (𝑂) to denote the utility a subset
of participants 𝑂 ↑ 𝑀 , the SV 𝑃 (𝑄) of participant 𝑄 is

𝑃 (𝑄) =
1
𝑀

∑
S↑P\𝐿

(
𝑀 ↓ 1
|S|

)↓1
[𝑁 (S ↔ {𝑄}) ↓ 𝑁 (S)] . (1)

As a contribution evaluation metric, the SV satis!es favorable
axioms such as balance, additivity, symmetry, and zero element, and
thus it has been widely used in the database community [6, 23, 63,
64, 66]. However, adopting SV for VFDV poses three challenges:
• Accuracy. Using model performance (e.g., test accuracy) as the

utility function leads to inconsistent SV estimates across models.
As a result, data valuation must be repeated whenever the model
changes, which is common in practice for tasks like performance
tuning. For example, as shown in Table 1, the SV correlation
between logistic regression (LR) and multilayer perceptron (MLP)
is only 0.45, and using LR-based SV for MLP participant selection
degrades accuracy from 0.8070 to 0.7893.

• Privacy. VFL requires to protect participants’ data privacy but
data valuation needs to exchange information about participant
data. This opens the door for malicious participants to infer or
steal private data from others through received messages.

• E"ciency. Computing SV requires evaluating 2𝑀 ↓ 1 coalitions
for 𝑀 participants, which is computationally intensive. As shown
in Table 1, even with only 4 participants, training a model for
evaluating each coalition leads to a long running time.
Multiple techniques are proposed to solve the above concerns.

For the !rst challenge, some works use mutual information as the
utility function [22, 24, 31], but these ignore marginal contribu-
tions and fail to ensure fairness among participants. For the second
challenge, homomorphic encryption (HE) is employed to protect
transmitted data [22, 24, 55], but it relies on a trusted third party,
cannot defend against collusion, and incurs high costs. For the third
challenge, methods such as Monte Carlo sampling [18], Hessian
approximation [54], and transfer learning [67] are used to reduce
complexity, yet they sacri!ce precision and still require repeated
evaluations. However, none of them considers accuracy, privacy,
and e#ciency simultaneously. These limitations lead us to ask:

Can we accurately, securely, and e"ciently compute the
Shapley value for each participant in VFL?

Our Solutions PS!MI. To this end, we propose a vertical federated
data valuation method PS!MI, which achieves estimation accuracy,
execution e#ciency, and data privacy at the same time.

✁ Mutual Information (MI) as Model Agnostic Utility. For
accurate data valuation, we !rst de!ne a general utility func-
tion that quanti!es the contribution of a coalition of participants
as the predictive power of their features for the downstream
task. Then, we show that the utility function can be naturally
expressed as the Shannon mutual information (MI) between the

Table 1: Consistency of Shapley value (SV) estimations and
model accuracy onBankwith 4 participants. (i) Pearson corre-
lation coe!cient (PCC) between the SVs estimated using the
test accuracy of Logistic Regression (LR) and Multilayer Per-
ceptron (MLP); (ii) Model accuracy of LR/MLP when trained
with top-1 participant selected according to SVs; (iii) Compu-
tation time, Single for one coalition, Total for all coalitions.

Proxy PCC Acc Time(s)

LR MLP Single Total

LR 0.4516 0.7893 0.7893 1930 28950
MLP 0.7740 0.8070 2100 31500

features of the participants and the target labels for the classi!ca-
tion task when the loss function is cross-entropy. The MI utility
function is model-agnostic and does not require model training.

✂ Projection-based MI Estimator. The MI utility can be esti-
mated by searching the 𝐿-nearest neighbors (KNNs) for data
samples. To run KNN e#ciently, we apply random projection to
transform the local features of the participants and add Gauss-
ian noises to the transformed features before distance computa-
tion. This improves e#ciency by avoiding HE since directly ex-
changing the transformed distances still satis!es the well-known
(𝑅, 𝑆)↓di"erential privacy. Moreover, we also show that this pro-
vides accurate MI estimations because the transformed distances
match the original distances in expectation.

✃ E!ciency Optimizations. To further enhance e#ciency, we
consider two key aspects, i.e., reducing the number of evaluated
coalitions and reducing the per-coalition evaluation cost.
- Strati!ed sampling for SV approximation. Computing the SV
of a participant requires to evaluate many coalitions. Instead
of enumerating these coalitions, we sample some coalitions
to meet a given target for estimation accuracy. Following the
Neyman approach [42], we begin with a sample allocation
method based on the variances of the coalitions but !nd that
the variances cannot be obtained before evaluating the coali-
tions, which causes a chicken-egg problem. Using the Popovi-
ciu’s inequality [46], we adopt the range of coalition utility to
replace variance. Moreover, we also fully reuse the evaluated
coalition utilities across participants by reformulating the SV.

- Implementation optimizations. A naive implementation of our
proposed PS!MI needs to compute the distances of all data
samples to a set of query samples for KNN. This is expensive
because there can be many data and query samples. To reduce
running time, we propose a suite of e#ciency optimizations,
i.e., locality sensitive hashing (LSH) for KNN candidate pruning,
batched candidate checking for each query sample, and adaptive
termination for coalition utility evaluation. In particular, for
each query sample, LSH can narrow down its KNNs from all
data samples to a small candidate set while protecting data
privacy; by batching and sharing the hashing for di"erent
query samples and coalitions, redundant computations are
avoided; adaptive termination saves computation by stopping
evaluating a coalition once the accuracy target is achieved.
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We conduct extensive experiments to compare our PS!MI with
!ve state-of-the-art VFDV methods on multiple real-world datasets.
We show that PS!MI produces accurate SV estimations, reaching a
Pearson’s correlation coe#cient up to 0.99 with the ground-truth
SVs. Meanwhile, PS!MI runs signi!cantly faster than the baselines,
achieving a maximum speedup of 592→. PS!MI can also bene!t
downstream model training since using its SV estimations to con-
duct participant selection usually yields higher model accuracy than
using the estimations of the baselines. Moreover, ablation studies
verify the e"ectiveness of our designs and optimizations.

2 PRELIMINARIES
In this section, we introduce di"erential privacy in Section 2.1 and
present the setup of vertical federated data valuation in Section 2.2.
Table 2 summarizes the frequently used notations.

2.1 Di"erential Privacy
Di"erential privacy (DP) is a rigorous privacy de!nition of data
disclosure that prevents attempts from learning private informa-
tion about any individual in a data release. A standard notion of
di"erential privacy is (𝑅, 𝑆) ↓ DP, which is de!ned as follows [10].

De#nition 1 ((𝑅, 𝑆) ↓ di"erential privacy). A random algorithm
A is (𝑅, 𝑆) ↓ di"erentially private if for any pair of datasets 𝑇 and
𝑇↗ that di"er in one record and for all possible subset𝑈 of possible
outputs ofA, we have 𝑀𝑉 [A(𝑇) ↑ 𝑈] ↘ exp(𝑅)𝑀𝑉 [A(𝑇↗

) ↑ 𝑈]+𝑆
where 𝑀𝑉 [·] denotes the probability of an event.

DP requires the output of a randomized algorithm to be approx-
imately the same if any single record is replaced with a new one.
The parameter 𝑅 is called the privacy budget where the smaller
𝑅 means stronger privacy protection is provided. The Gaussian
mechanism, one of the most classic DP mechanisms, adds Gauss-
ian noise to the return of a function 𝑊 to ensure the result is
di"erentially private. The variance of the noise depends on 𝑋2
sensitivity of 𝑊 , de!ned with a pair of neighboring datasets as
ω2 𝑊 = max𝑁,𝑁 ↗ ≃ 𝑊 (𝑇) ↓ 𝑊 (𝑇↗

)≃2. The Gaussian mechanism is
formulated as M = 𝑊 + N(0,𝑌2), where 𝑌2 = 2 ln(1.25/𝑂 ) · (ω2 𝑃 )2

𝑄2 .
When 𝑊 outputs a vector, M adds independent noises, sampled
from N(0,𝑌2), to each element of the vector.

2.2 Vertical Federated Shapley Value
Data Layout. Let P be a participant set with 𝑀 participants and
a dataset D = {𝑍 ,𝑎 } with 𝑏 data samples. 𝑍 ⇐ R𝑅→𝑆 is the
joint feature space where 𝑐 is the dimension of the joint feature
space. In the VFL setting, this joint feature space 𝑍 is vertically
partitioned over di"erent participants — each participant 𝑄 ⇐ P

holds a subset of features (columns) of 𝑍 , denoted by 𝑍𝐿 , such
that: 𝑍 = [𝑍1, · · · ,𝑍𝐿 , · · · ,𝑍𝑀 ]. Here [., · · · , .] denotes the con-
catenation operation. The local dataset for each participant 𝑄 ⇐ P

is D𝐿 = 𝑍𝐿 ⇐ R𝑅→𝑆𝐿 = {𝑑𝐿𝑇 : 𝑒 ⇐ [𝑏 ]}. Only one participant
called the leader participant holds the label set 𝑎 = {𝑓𝑇 : 𝑒 ⇐ [𝑏 ]}.
Figure 1 shows an example of VFL, where a bank wants to build a
fraud detection model with an e-commerce company.
Data Alignment. In VFL, the data samples among participants
are assumed to be vertically aligned [3, 15, 16]. In other words, the
overlapping samples from participants (e.g., instances 2 and 3 in

Table 2: The summary of frequently used notations.

Symbol Description
𝑏 the number of samples
P the set with 𝑀 participants
𝑍𝐿 feature matrix of participant 𝑄
S the coalition of participants
𝑁 (·) utility function
𝑔 Gaussian random projection matrix
𝑕 Gaussian noise matrix
Q the query set

𝑃 (𝑄) Shapley value of participant 𝑄

Privacy-Preserving Transmission

uid age income label
1 36 13K Yes
2 45 10K Yes
3 23 6K No

Bank

uid purchase expense
0 12 500
2 8 200
3 23 10

E-commerce	Company

Figure 1: An illustration of vertical federated learning (VFL).

Figure 1) have been extracted and organized in the same order prior
to training. This can be achieved by the private set intersection
(PSI) technique [5, 21, 45, 47]. Then, participants can use the same
random seed to sample synchronized mini-batches..
Problem Formulation The Shapley value is a broadly adopted
concept in collaborative game theory for evaluating a participant’s
contribution to a coalition. Consider a set P consisting of 𝑀 partici-
pants. A utility function 𝑁 : 2𝑀 ⇒ R maps each possible coalition
S ↑ P to a real number that describes the utility of a coalition.
Shapley value measures the expectation of marginal contribution
by participant 𝑄 ⇐ P in all possible coalitions. That is, 𝑃 (𝑄) =
1
𝑀
∑

S↑P\𝐿
(𝑀↓1
|S |

)↓1
[𝑁 (S↔{𝑄})↓𝑁 (S)] . The formula can be rewrit-

ten in expectation: 𝑃 (𝑄) = 1
𝑀 !

∑
𝑈⇐ε (P) [𝑁 (S𝑈 ↔ {𝑄}) ↓ 𝑁 (S𝑈 )]

where ε(P) is the set of all permutations of participants, and S𝑈 is
the set of participants that precede 𝑄 . A coalition of 𝑀 participants
can form in 𝑀 ! orders. The Shapley value of each participant is the
average of the marginal contributions over all the possible orders.

The SV is arguably the most widely studied scheme for data
valuation [23, 33, 62]. It is the only existing measure that satis!es
all the four fundamental requirements of fair reward allocation,
including balance, symmetry, additivity, and zero element [48]. For
formal statements of these axioms, see our technical report [11].
These desirable properties motivate us to adopt the SV for VFDV.

In this work, the goal of VFDV is thus to estimate the Shapley
value 𝑃𝐿 of each 𝑄 ⇐ P in VFL. We formalize this goal as follows.

De#nition 2. Given a set of participants P, VFDV aims to estimate
the Shapley value 𝑃𝐿 for each 𝑄 ⇐ P based on a utility function
𝑁 : 2P ⇒ R. The estimation must satisfy (𝑅, 𝑆)-di"erential privacy
with respect to each participant’s local data.
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3 THE PS!MIMETHOD
To achieve accurate, secure, e#cient vertical federated data valua-
tion, we aim to answer the following questions.
• How to formulate a model-agnostic utility function?
• How to securely compute the utility for each coalition?
• How to reduce the required number of evaluated coalitions?
To achieve model-agnostic data valuation, we !rst show that the
utility function can be expressed as the mutual information (MI)
between the participants’ local features and the labels in Section 3.1.
Exact Shapley value computation requires estimating the mutual
information for 2𝑀 ↓ 1 coalitions, and thus the total computational
complexity is C𝑉𝑊𝑋𝑌 ⇑𝑈 (2𝑀 ), where C𝑉𝑊𝑋𝑌 is the per-coalition evalua-
tion cost. To reduce per-coalition evaluation cost C𝑉𝑊𝑋𝑌 , we propose
an e#cient but privacy-preserving mutual information estimator
in Section 3.2. To reduce the number of evaluated coalitions, we
design a strati!ed sampling method to e#ciently approximate the
Shapley value of the participants in Section 3.3. The core task then
becomes identifying the 𝐿-nearest neighbors for the query dataset
corresponding to each coalition, as shown in Figure 2. To enable
e#cient implementation, we design a series of optimization strate-
gies: LSH-based pruning to narrow candidate sets in Section 4.1;
batched candidate checking to avoid redundant computation across
coalitions in Section 4.2; adaptive termination to stop early once
accuracy is su#cient in Section 4.3.

3.1 Utility Formalization: Mutual Information
To achieve e"ective data valuation, it is crucial to determine how
to measure the utility of a data coalition. As mentioned above, the
utility of a coalition should be model-agnostic. Our basic idea is to
quantify the reduction in risk over the mean prediction of a given
set of participants. Below we !rst provide a general de!nition of
the utility function 𝑁 in vertical federated data valuation.
De#nition 3. Let 𝑖 (·, ·) represent the loss function, and let 𝑗 (𝑂)
denote the set of predictors used to predict the label 𝑎 , trained over
the participant subsetS ↑ P. Given the utility function 𝑁 : 2𝑀 ⇒ R,
the utility of S is de!ned to be:

𝑁 (𝑂) = min
𝑍⇐𝑎 (⇓ )

E
[
𝑖
(
𝑘(𝑍⇓),𝑎

) ]
↓ min

𝑍⇐𝑎 (𝑏 )
E
[
𝑖
(
𝑘(𝑍𝑏 ),𝑎

) ]

The left term is the loss achieved with the mean prediction when
the model 𝑘 is trained on the empty set and the right term is the
loss achieved using the features 𝑍S over the participant coalition
S. The utility function quanti!es the predictive power that 𝑘 learns
from the features𝑍S . Such a de!nition is widely used in importance
measurements and explainability [4, 7, 20]. We observe that, for
a classi!cation model trained with cross-entropy loss, the utility
function 𝑁 is equivalent to the Shannon mutual information (MI)
between the features 𝑍S over S and the labels 𝑎 . The proof of
Lemma 1 is provided in our technical report [11].
Lemma 1. For a classi!cation problem, let 𝑙 be the number of
classes. If the loss function is 𝑖 = ↓

∑𝑐
𝑑=1 𝑓𝑑 log(𝑄𝑑 ), it follows that

𝑁 (𝑂) = 𝑚 (𝑂 ;𝑎 ) = 𝑛 (𝑎 ) ↓ 𝑛 (𝑎 |𝑍S) where 𝑚 (·, ·) is the Shannon
mutual information and 𝑛 (·) is the entropy.

Lemma 1 reveals that the mutual information between local
features and labels can express the predictive power of the local
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Figure 2: The system architecture and work$ow of PS!MI.

features 𝑍𝐿 held by participant 𝑄 . Thus the utility of participant 𝑄
can be measured by MI between 𝑍𝐿 and the labels 𝑎 .
Intuition. In this work, we utilize the mutual information as the
utility metric for three main reasons. First, from an information-
theoretic perspective, mutual information quanti!es the reduction
in uncertainty about the target variable in predicting 𝑎 attributed
to 𝑍S . Second, as demonstrated in Lemma 1, mutual information
is the reduction of minimum expected loss in predicting 𝑎 when
the model is trained over the coalition 𝑂 using cross-entropy loss.
Third, mutual information is a model-agnostic utility metric, relying
only on data distribution and applicable across diverse models. We
provide a detailed discussion in our technical report [11].

The Shapley value of participant 𝑄 can be thus expressed as

𝑃 (𝑄) =
1
𝑀

∑
S↑P\𝐿

(
𝑀 ↓ 1
|S|

)↓1
[𝑚 (S ↔ {𝑄};𝑎 ) ↓ 𝑚 (S;𝑎 )] . (2)

Comparison to Previous Results. Previous works [22, 24, 31]
have employed MI to quantify participant contributions in VFL.
However, these methods overlook the marginal contributions of
participants and fail to ensure fairness among them. Han et al. [18]
proposed using mutual information as a utility measure, but this
approach requires every participant to access labels, which poses
signi!cant privacy risks and is impractical in VFL. Critically, none of
these works o"er theoretical justi!cation for using MI as a measure
of utility; they rely solely on empirical evidence. Instead, our work
theoretically formalizes the VFDV problem and establishes that MI
is the reduction of the minimum expected loss in predicting labels
for the classi!cation task when the loss function is cross-entropy.
KNN-based MI Estimator. Now, the next question becomes how
to estimate the mutual information for each coalition S ↑ P. Among
the various methods to estimate MI, 𝐿-nearest neighbors (KNN) MI
estimators are widely used due to their superior theoretical and
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practical performance [30, 44]. The basic idea is to estimate the local
log-density around each data sample by computing the volume of
the ball that encloses its 𝐿-nearest neighbors. Formally, consider the
dataset D = {(𝑑𝑇 ,𝑓𝑇 )}, 𝑒 = 1, 2, . . . ,𝑏 where 𝑑𝑇 denotes the feature
vector of sample 𝑒 and 𝑓𝑇 is the label. For each sample 𝑒 ⇐ D, the
process contains three major steps:

✁ identify the 𝐿-nearest neighbors of the sample 𝑒 among 𝑏𝑇 sam-
ples that share the same label with 𝑓𝑇 ;

✂ compute the maximal distance 𝑜𝑇 between 𝑒 and its 𝐿 neighbors;
✃ count the number of neighbors𝑝𝑇 in the full dataset D that lie

within distance 𝑜𝑇 to sample 𝑒 .
Based on 𝑏𝑇 and𝑝𝑇 , we compute 𝑚𝑇 = 𝑕 (𝑏 )↓𝑕 (𝑏𝑇 ) +𝑕 (𝐿)↓𝑕 (𝑝𝑇 )

where 𝑕 (𝑑) = 𝑒
𝑒𝑓 𝑞𝑟(ϑ(𝑑)) ⇔ 𝑞𝑟𝑑 ↓

1
2𝑓 is the digamma function.

Given the query set Q ↑ D, we estimate the mutual information
by averaging 𝑚𝑇 over the query set Q 𝑚 (𝑍 ;𝑎 ) = 1

| Q |

∑
𝑇⇐Q 𝑚𝑇 .

3.2 Utility Evaluation: Random Projection
KNN-based MI estimator needs to identify the 𝐿-nearest neigh-
bors for |Q| query samples. This process requires participants to
calculate partial distances 𝑜𝐿 = [≃𝑑𝐿𝑇 ↓ 𝑑𝐿𝑔 ≃

2
2, 𝑒 ⇐ [𝑏 ]] between

their local features and each query sample 𝑠 ⇐ Q, then send these
distances to an aggregation server. However, these partial distances
could potentially leak the feature privacy of participants. To address
this issue, existing works [22, 24] utilize homomorphic encryption
(HE) to encrypt the partial distances. HE provides a strong privacy
guarantee, however, it is time-consuming for encryption and math-
ematical operation on encrypted data. To address this problem, we
resort to di"erential privacy, a more e#cient data protection tech-
nique. Di"erential privacy protects data by adding noise, which
is easy to implement and resource-e#cient. However, this protec-
tion inherently introduces a privacy-utility trade-o", as the added
perturbations degrade estimation accuracy.

To address this issue, we propose a novel di"erentially private
mutual information estimator (DP-MI) with a utility guarantee. The
main idea of DP-MI is to project the local features of participants
into a di"erent feature space. This preserves the distance character-
istics of the original feature space essential for mutual information
(MI) estimation and enables secure data sharing [60]. Participants
and the server then jointly estimate MI for coalitions based on these
transformed features. The DP-MI procedure consists of two main
steps: data transformation and mutual information estimation, as
outlined in Algorithm 1. The data transformation in DP-MI consists
of two steps: random projection and noise perturbation.

✁ Random Projection: each participant 𝑄 generates a Gaussian ran-
dom projection matrix 𝑔𝐿 ⇐ R𝑆𝐿→𝑕𝐿 where each entry is chosen
independently drawn fromN(0, 1), and projects its local features
𝑍𝐿 ⇐ R𝑅→𝑆𝐿 into new feature space as 𝑍𝐿𝑔𝐿 ⇐ R𝑅→𝑕𝐿 .

✂ Noise Perturbation: each participant 𝑄 generates Gaussian noise
matrix𝑕𝐿 ⇐ R𝑅→𝑕𝐿 , where each entry is independently sampled
fromN(0,𝑌2). The noise matrix is then added to the transformed
features it to the projected features 𝑍𝐿 = 𝑍𝐿𝑔𝐿 +𝑕𝐿 .

After data transformation, each participant 𝑄 computes 𝑜𝐿 =
[≃𝑑𝐿𝑇 ↓ 𝑑𝐿𝑔 ≃

2
2, 𝑒 ⇐ [𝑏 ]] ↓ 2𝑉𝑌2 as partial distances and sends 𝑜𝐿

instead of 𝑜𝐿 during mutual information estimation.

Algorithm 1: DP-MI
Input: Coalition S; Privacy parameters 𝑄,𝑂 ; Projection dimension 𝑕𝐿
Output:Mutual information 𝑖 (𝑗S ,𝑘 )

Operation: Data Transformation
1 Random Projection. Each participant 𝐿 ⇐ S generates a Gaussian projection

matrix 𝑙 ⇐ R𝑀𝐿 →𝑁𝐿 and projects its local features 𝑗𝐿 into 𝑗𝐿𝑙𝐿 ;
2 Noise Perturbation. Each participant 𝐿 ⇐ S generates a Gaussian random

noise matrix𝑚 ⇐ R𝑂 →𝑁𝐿 . The noise matrix is then added to the
transformed features it to the projected features 𝑗𝐿 = 𝑗𝐿𝑙𝐿 +𝑚𝐿 ;

Operation: Mutual Information Estimation
3 for 𝑔 = 1 to | Q | do
4 Participant 𝐿 ⇐ S:

5 𝑒𝐿 = [ ≃𝑓𝐿𝑃 ↓ 𝑓𝐿𝑄 ≃
2
2 ↓ 2𝑕𝐿𝑛2, 𝑇 ⇐ D];

// Compute the partial distances 𝑒𝐿

6 (Leader) Compute 𝑖𝑃 = 𝑚 (𝑅 ) ↓𝑚 (𝑅𝑃 ) +𝑚 (𝑜 ) ↓𝑚 (𝑝𝑃 ) ;
7 Server:
8 𝑒 =

∑
𝐿⇐S 𝑒𝐿 ;

// Aggregate partial distances 𝑒𝐿 into the complete

distances 𝑒 and send 𝑒 to leader

9 (Leader) Compute 𝑖 (𝑗S ;𝑘 ) = 1
|Q|

∑
𝑄⇐Q 𝑖𝑄 for coalition S ;

1.0 2.0 1.0

2.0 0.5 0.5

3.0 3.5 2.0

0.70 -0.35

-0.40 0.80

0.60 0.50

0.08 0.10

-0.09 0.06

0.11 -0.07

1.58 0.23

1.34 -0.16

3.51 1.76

*+ = +- + /Samples + Projection - Noise /

× + =
0

1

2

ID

0.00 6.75 10.25

6.75 0.00 17.25

10.25 17.25 0.00

Exact Dist. 0

Squared distance
0.00 6.71 10.20

6.71 0.00 17.20

10.20 17.20 0.00

Squared distance

Approx. Dist. 10

Figure 3: An example of data transformation in DP-MI.

Example 1. Figure 3 shows an example of data transformation.
After projection and noise addition, the squared distance between
sample 0 and 1 changes slightly from 6.75 to 6.71. Notably, the
nearest neighbor of all samples remains the same.

In the following, we explain how DP-MI preserves the utility
while guaranteeing data privacy when estimating MI for coalitions.
Utility Guarantee. The utility guarantees depend on the random
projection matrix 𝑔𝐿 and noises𝑕 . The squared Euclidean distance
in transformed feature space is unbiased.

Theorem 1. Let 𝑔 ⇐ R𝑆→𝑕 be a Gaussian random projection matrix
and 𝑕 ⇐ R𝑅→𝑕 be a Gaussian noise matrix. For any 𝑑𝑇 , 𝑑 𝑞 ⇐ 𝑍 ⇐

R𝑅→𝑆 and 𝑑𝑇 , 𝑑 𝑞 denote their corresponding elements in𝑍 = 𝑍𝑔+𝑕 .
Then, ≃𝑑𝑇 ↓ 𝑑 𝑞 ≃22 ↓ 2𝑉𝑌2 is unbiased estimator of ≃𝑑𝑇 ↓ 𝑑 𝑞 ≃22.

P"##$. Due to the limited space, please see our technical re-
port [11] for detailed proof. The same to the following theorems. ⊋

Theorem 1 states that the squared Euclidean distance between
two vectors in expectation can be preserved after the data transfor-
mation of di"erential privacy in our DP-MI.
Privacy Guarantee. DP-MI enhances privacy by adding Gaussian
noise to the projected feature vectors 𝑍𝑔. Now we investigate the
minimum amount of noise𝑕 that must be added to 𝑍𝑔 to ensure
that DP-MI satis!es (𝑅, 𝑆) ↓ di"erential privacy.

3563



Corollary 1. Given the vectors 𝑍 and a random projection matrix
𝑔, 𝑍𝑔 +𝑕 satis!es (𝑅, 𝑆) ↓ di"erential privacy if 𝑆 < 1

2 the noises

𝑕 are sampled from N(0,𝑌2) with 𝑌 ↖
2
𝑄

√
ln( 1

2𝑂 ) + 𝑅 .

Corollary 1 establishes the minimum noises required to achieve
(𝑅, 𝑆)↓di"erential privacy. This result is derived as a by-product of
the proof for the well-known distributed Gaussian mechanism [9].

3.3 Approximate Valuation: Strati#ed Sampling
Above we provide an e#cient vertical federated mutual information
estimator DP-MI. Taking DP-MI as a basic operation, computing
the exact Shapley value using Equation 2 still requires executing
2𝑀 ↓1 times DP-MI for all possible coalitions. It will bring expensive
computation and communication costs in VFL. The Monte Carlo
(MC) sampling is commonly used to compute the approximate
SV [18, 23]. The core idea behind MC-based methods is to use
the sample mean to approximate the SV. More formally, let T =
[𝑡1, 𝑡2, . . . , 𝑡𝑟 ] be𝑢 permutations and each permutation randomly
sampled from ε(P) with a probability of 1/𝑀 !. The approximate
SV of participant 𝑄 is 𝑃 (𝑄) = 1

𝑟
∑
𝑈⇐T [𝑁 (S𝑈 ↔ {𝑄}) ↓ 𝑁 (S𝑈 )]. 𝑃𝐿

is the average of utility di"erence 𝑣𝐿 over𝑢 sampled permutations.
The estimation error |𝑃 (𝑄) ↓ 𝑃 (𝑄) | can be bounded by applying
Hoe"ding’s inequality [40]. The detailed process of the Monte
Carlo method is provided in our technical report [11].

MC-based methods are based on simple random sampling, which
treats all coalitions equally, ignoring population bias. This can
lead to high estimation variance, especially with uneven subgroup
sizes [23, 63]. Strati!ed sampling can give a smaller variance than
simple random sampling [29, 63]. Speci!cally, strati!ed sampling
partitions coalitions into 𝑀 disjoint stratum G = {G

1, . . . ,G𝑀
}

based on coalition size, each of which contains 𝑏 𝑞 coalitions. Ney-
man allocation [42] is the optimal allocation that allocates samples
to strata and minimizes the sample variance of the estimator.

min𝑤𝑥𝑉 [𝑃𝐿 ] =
𝑀∑
𝑞=1

𝑏 𝑞𝑌2𝑞
𝑏 2 s.t.

𝑀∑
𝑞=1

𝑏 𝑞 = 𝑏 (3)

where 𝑌2𝑞 is the variance of the coalitions utilities in stratum 𝑦 .

Stratum Size. Neyman approach allocates more samples to larger
or more variable strata, with optimal allocation depending on stra-
tum variance. Existing works typically sample coalition utilities
to estimate variance [29, 63], which is impractical for VFL due to
high computation costs. Fortunately, we can easily know the utility
range of each stratum. Based on the Popoviciu’s inequality [46], i.e.
the variance 𝑌2 ↘

𝑕 2
4 , we approximate variance using the utility

range 𝑉 𝑞 of each stratum 𝑦 which yields a practical sample alloca-
tion. Given a total sample size 𝑢 , the optimal size 𝑢 ⇑

𝑞 of stratum G
𝑞

is 𝑢 ⇑
𝑞 = 𝑢

𝑅 𝑅𝑕 2𝑅∑𝑆
𝑅=1 𝑅 𝑅𝑕 2𝑅

. The variance 𝑌2 only determines proportional

allocation. Thus the range can serve the purpose well [39].
Sample Strategy. After determining the size of each stratum, how
should we sample e"ectively? A naive approach is to apply the
Monte Carlo method for each stratum. However, in this approach,
one sample of marginal contributions 𝑚 (S ↔ {𝑄}) ↓ 𝑚 (S) can only
be used to update the SV for one participant 𝑄 , although coalition S

(!: {+" , +#}

+" +# +$
Permutation

($: {+" , +#}./(+#)

(%: {+" , +# , +$}

(#: {+"}

./(+$)

Reuse(": {+"}./(+") ∅

Figure 4: A running example of coalition utility reuse.

may containmany other participants.We observe that the coalitions
utilities can be reused for e#cient computation, as illustrated below.

Example 2. Consider a sampled permutation [𝑀1, 𝑀2, 𝑀3], the utili-
ties of 𝑁 ({𝑀1, 𝑀2}) and 𝑁 ({𝑀1}) are computed for estimating 𝑂𝑤 (𝑀2)
for 𝑀2. 𝑁 ({𝑀1, 𝑀2}) and 𝑁 ({𝑀1}) can be reused for estimating 𝑂𝑤 (𝑀3)
for 𝑀3 (as shown by the red dotted box in Figure 4).

In order to estimate the Shapley value of multiple participants
simultaneously, we can treat the Shapley value as the di"erence of
two utility expectations and reuse utilities accordingly. That is,

𝑃 (𝑄) = E𝑈⇐ε (P) [𝑁 (S𝑈 ↔ {𝑄})] ↓ E𝑈⇐ε (P) [𝑁 (S𝑈 )] (4)

Note that permutation 𝑡 in 𝑁 (S𝑈 ↔ {𝑄}) is not necessary the same
as 𝑡 in 𝑁 (S𝑈 ). The SV can be rewritten over the stratum

𝑃 (𝑄) =
1
𝑀

𝑀∑
𝑞=1

[
ES𝑇 ⇐G

𝑅𝑁 (S𝑈 ↔ {𝑄}) ↓ ES𝑇 ⇐G
𝑅𝑁 (S𝑈 )

]
(5)

where G 𝑞 = {S|S ↑ P, |S| = 𝑦}. In this way, the coalition utilities
can be reused since all evaluations of 𝑁 (S) are used for estimating
the Shapley value 𝑃 (𝑄) for every 𝑄 ⇐ P.

Theorem 2. The estimated Shapley value 𝑃 (𝑄) is an unbiased
estimator of 𝑃 (𝑄), i.e. E(𝑃 (𝑄)) = 𝑃 (𝑄).

Based on Hoe"ding’s inequality, we can obtain a bound on the
error of approximate Shapley value 𝑃 (𝑄) as follows.

Lemma 2. Given the range 𝑉 𝑞 of each stratum G
𝑞 , an error bound

𝑅 > 0, then 𝑀𝑉 (𝑃 (𝑄) ↓ 𝑃 (𝑄) ↘ 𝑅) = 1 ↓ 2 exp( 2𝑄2∑𝑆↓1
𝑅=2

𝑁2𝑅
𝑆2𝑈𝑅

) .

3.4 Overall Work$ow
Below we present a naive implementation of our PS!MI, as outlined
in Algorithm 2. The server maintains a strati!ed sampler that gen-
erates a set of𝑢 coalitions to be evaluated (line 1). Each participant
𝑄 applies a one-time data transformation based on the Gaussian
random projection matrix 𝑔 and noise matrix𝑕 to obtain 𝑍𝐿 (line
2-3). For each 𝑧 ⇐ [𝑢 ], participants and the server collaboratively
execute DP-MI based on the already-transformed features 𝑍𝐿 in Al-
gorithm 1 to estimate the mutual information between the features
of coalition S𝑠 and the labels (line 4-5). After computing mutual in-
formation for all coalitions, the leader computes the Shapley value
𝑃 (𝑄) using Equation 5 for each participant 𝑄 ⇐ P (line 6).
Complexity Analysis. Let 𝛥 be the cost to calculate a partial
distance and 𝛩 be the cost to sum two distances. For each coalition,
the computation and communication complexity is𝑈 (𝑏𝑡𝑏 ). Thus
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Algorithm 2: Naive Implementation of PS!MI
Input: Query sets of each participant Q1, . . . , Q𝑆
Output: SVs of participants [𝑢1, 𝑢2, . . . , 𝑢𝑆 ]

1 (Server) Generate𝑟 coalitions using strategy in Section 3.3;
Operation: Data Transformation

2 Random Projection: Each participant 𝐿 ⇐ S generates a Gaussian projection
matrix 𝑙 ⇐ R𝑀𝐿 →𝑁𝐿 and projects 𝑗𝐿 into 𝑗𝐿𝑙𝐿 ;

3 Noise Perturbation: Each participant 𝐿 ⇐ S generates a Gaussian random
noise matrix𝑚 ⇐ R𝑂 →𝑁𝐿 . The noise matrix is then added to the
transformed features it to the projected features 𝑗𝐿 = 𝑗𝐿𝑙𝐿 +𝑚𝐿 ;

4 for 𝑠 = 1 to𝑟 do
5 Invoke the mutual information estimation procedure for the 𝑠 -th

coalition as de!ned in Algorithm 1;

6 (Leader) Compute 𝑢 (𝐿 ) using Equation 5.

the overall computation complexity is 𝑈 (𝑢𝑏𝑡𝑏𝑀) and the total
communication complexity is 𝑈 (𝑢𝑏𝑡𝑏 ).

4 IMPLEMENTATION OPTIMIZATIONS
The ine#ciency of the naive work$ow arises from the following: ✁
computing partial distances for all samples for a query,✂ repeatedly
enumerating the same query samples in Q across di"erent coali-
tions, ✃ evaluating each coalition over the entire query set, even
when it has already been fully evaluated. Obviously, there exist con-
siderable redundant computations. To overcome these challenges,
we propose a series of e#ciency optimization strategies:

✁ To reduce the number of samples needed for distance compu-
tation, we leverage locality sensitive hashing (LSH) to obtain a
much smaller candidate set for a query in Section 4.1.

✂ To avoid model retraining for 𝑢 coalitions, we introduce a batch
optimization strategy to calculate the utility of di"erent coalitions
for one query in one communication round in Section 4.2.

✃ To reduce the number of query samples 𝑏𝑡 , we design an adap-
tive termination mechanism, which can dynamically discard the
fully evaluated coalitions during evaluation in Section 4.3.

4.1 Candidate Pruning with LSH
DP-MI requires identifying the nearest samples for a query to esti-
mate themutual information.We leverage locality sensitive hashing
(LSH) to prune the candidates needed for distance computation.
In LSH, every data sample is converted into codes in each hash
table by using a hash function 𝛬. The hash function is designed to
preserve the relative distance between di"erent data samples. In
other words, similar data samples have the same hashed value with
high probability. We choose the Euclidean space under the 𝑞2 norm,
in this case, a commonly used hash function is: 𝛬(𝑑) = ↙

𝑋·𝑓+𝑣
𝑕 ∝.

where 𝑥 is a 𝑐 -dimensional vector each of whose entries is cho-
sen from the standard Gaussian distribution N(0, 1) and 𝛯 ⇐ R is
uniformly chosen from the range [0, 𝑉 ]. The overall idea is that if
two samples are “close” together in the Euclidean space and if we
project them onto some other vector drawn from Gaussian distri-
bution, then they should remain “close” to each other. We observe
that LSH can naturally combine with our DP-MI, requiring only
a little additional computation. In DP-MI, each participant 𝑄 ⇐ P

generates the Gaussian projection matrix 𝑔 ⇐ R𝑆𝐿→𝑕 to transform
original features into 𝑍𝐿 = 𝑍𝐿𝑔𝐿 . This transformation aligns with

the hash function used in Euclidean LSH. When aggregated, the
global projection becomes 𝑍 = 𝑍𝑔 where 𝑔𝑆→𝑕 and each entry of 𝑔
is sampled fromN(0, 1). This e"ectively applies r independent hash
functions via one matrix multiplication. As a result, hash values
can be directly obtained from 𝑍 with negligible overhead.
Implementation Details. The overall process is as follows. ✁
Local hashing. Each participant computes local hash values 𝛬𝐿 for
all samples and sends them to the server. ✂ Hash aggregation. The
server computes the global hash code as 𝛬(𝑑𝑇 ) =

∑
𝐿⇐P 𝛬𝐿 (𝑑𝑇 ). ✃

Hash table construction. The server builds a hash table 𝑛 , where
hash codes are keys and pseudo identities (IDs) are values. ✄ Query
processing. For a query 𝑠, the server retrieves a candidate set C from
bucket 𝛬(𝑠), signi!cantly narrowing the search space. To protect
the identities, we shu%e the data and use pseudo IDs during trans-
mission. Speci!cally, each participant shu%es data using a shared
seed and assigns pseudo IDs based on shu%ed indices. The mapping
to original IDs is stored locally and used only when needed.

4.2 Batched Candidate Checking
To solve the second ine#ciency problem of the naive work$ow,
we study can we batch repeated computation and communication to
avoid redundancy? By reforming the de!nition of Shapley value, we
can accurately calculate the SV without any repeated computation.

The naive work$ow directly interprets the de!nition of SV and
chooses a coalition-wise mechanism that handles all possible coali-
tions iteratively. It is the fundamental reason for the ine#ciency
problem because di"erent coalitions handle the same query samples
individually. To address this, we adopt a sample-wise approach by
reformulating the Shapley value as a sum over query samples.

𝑃 (𝑄) =
1
𝑢

𝑟∑
𝑠=1

1
|Q|

∑
𝑔⇐Q

𝑚𝑔
(
S𝑠 ↔ {𝑄}) ↓ 𝑚𝑔 (S𝑠 )

)
(6)

=
1
|Q|

∑
𝑔⇐Q

1
𝑢

𝑟∑
𝑠=1

𝑚𝑔
(
S𝑠 ↔ {𝑄}) ↓ 𝑚𝑔 (S𝑠 )

)
, (7)

where 𝑚𝑔 = 𝑕 (𝑏 ) ↓𝑕 (𝑏𝑔) +𝑕 (𝐿) ↓𝑕 (𝑝𝑔). Here the utility is !rst
calculated over a single query sample instead of all query samples.
To avoid redundancy, we need to answer the following question:

Can we obtain the utility of di#erent coalitions for
one instance in one round of communication?

As we will show, after the union of candidates sets over di"erent
coalitions, we can run KNN in VFL only once for each query sample
and calculate all necessary utility values.
Batched Hashing and Querying. To reduce the samples involved
in identifying the 𝐿-nearest neighbors, we adopt locality-sensitive
hashing (LSH). It narrows down the candidate set by searching sam-
ples in the same bucket as the query. However, candidate sets vary
across coalitions. To this end, we propose to retrieve all possible
candidates at once and batch KNN tasks of all coalitions in a single
execution. Speci!cally, each participant 𝑄 ⇐ P computes the local
hash codes 𝛬𝐿 (𝑍𝐿 ) for its local features 𝑍𝐿 and sends them to the
server. The server builds 𝑢 hash tables H = (𝑛1, . . . ,𝑛𝑟 ), each for
coalition S𝑠 , 𝑧 ⇐ [𝑢 ]. For a query 𝑠, we retrieve candidates C𝑠 from
the corresponding bucket in each 𝑛𝑠 . The union of all C𝑠 forms the
global candidate set 𝑙 . Each participant computes local distances
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Key Values
0 {35, 23, 26, 38, 24}
1 {62, 5, 12, 16}
2 {72, 79, 93, 45}
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2 {72, 93, 45, 81}
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Hash table !! Hash table !"query ℎ # = 0

Global candidates

Figure 5: An example of batch optimization mechanism.

between 𝑠 and all samples in C and sends them to the server. The
server performs the additive aggregation for each S𝑠 . The global
candidate set allows one-pass utility evaluation for all coalitions
with the shared distance computations, which e"ectively reduces
the computation and communication overhead.

Example 3. As shown in Figure 5, consider a query 𝑠 with hash
code 𝛬(𝑠) = 0. For two coalitions S1 and S2, the candidate sets
are {35, 23, 26, 38, 24} and {35, 23, 24, 46}, respectively. Their union
is {35, 23, 26, 38, 24, 46}, includes the 𝐿-nearest neighbors for both
coalitions. Thus, local distances need to be computed only once,
enabling shared utility evaluation for both S1 and S2.

4.3 Adaptive Coalition Termination
For each coalition, the naive work$ow needs to calculate the mutual
information over the entire query set Q. However, some coalitions
may already be su#ciently evaluated, yet their valuation continues.
That means that the utility of these coalitions will change only
marginally. This leads to signi!cant redundant computation and
communication costs. To address this issue, we propose an adaptive
valuation mechanism that dynamically excludes fully evaluated
coalitions, enabling a more e#cient Shapley value estimation.

Theorem 3. Given the query set Q, an error bound 𝑅 , if 𝑌2 ↘

| Q |𝑄2

↓ ln(𝑂 ) ↓
1
3𝑉𝑅 , then 𝑚 ↓ 𝑚 ↘ 𝑅 holds with probability at least 1 ↓ 𝑆 .

The proof of Theorem 3 is provided in the techinical report [11].
Speci!cally, we compute the unbiased estimation of 𝑌2

S
for each

coalition S using Bessel’s correction once a predetermined thresh-
old is reached. If 𝑌2

S
meets the condition outlined in Theorem 3,

the coalition S is excluded from the further evaluations.

Example 4. Figure 6 shows an example of the adaptive mechanism
applied to a query set of size 6 and four coalitions. Coalition S2 is
fully evaluated by query 𝑠3 and is therefore excluded from further
evaluations (i.e., 𝑠4, 𝑠5). The same applies to coalitions S3 and S4.

4.4 Optimized Execution Work$ow
Below we describe the process of our proposed PS!MI with opti-
mization strategies in detail. We provide the pseudo-code in our
technical report [11]. The server maintains a strati!ed sampler that
selects a set of𝑢 coalitions to be evaluated. The core task is to iden-
tify the 𝐿-nearest neighbors for the query dataset corresponding to
each coalition S𝑠 , 𝑧 ⇐ [𝑢 ]. As shown in Figure 2, the procedure of
𝐿-nearest neighbor search, which includes the following steps:

✁ Data transformation. Each participant 𝑄 ⇐ P applies Gaussian
random projection and adds noise to the local data to obtain 𝑍𝐿 .

Query
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Figure 6: A running example of the adaptive mechanism.

✂ Create the hash table. The server builds a global hash table, where
the keys are ↙𝑑𝑇 ∝ for each 𝑑𝑇 ⇐ 𝑍 , and the values are pseudo IDs.

✃ Retrieve the global candidates. For each query 𝑠 ⇐ Q, each par-
ticipant 𝑄 retrieves the LSH candidates C from the server and
computes the distances 𝑜𝐿 between 𝑠 and each candidate.

✄ Compute partial distances. Each participant 𝑄 sorts 𝑜𝐿 in ascend-
ing order to obtain a sorted list 𝑋𝐿 = [(𝑒,𝑜𝐿 (𝑠, 𝑒), 𝑒 ⇐ C]. The
server and participants then apply the Fagin algorithm [12] to
!nd the top-𝐿 candidates C𝑆 from all sub-rankings [22, 24].

☎ Aggregate partial distances. Each participant sends their partial
distances to the server, which aggregates them for each coalition:
𝑜 = {𝑜𝑠 =

∑
𝐿⇐S𝑉

𝑜𝐿 | 𝑧 ⇐ [𝑢 ]}.
✆ Identify 𝐿-nearest neighbors. For each coalition S𝑠 , the leader

computes 𝑚𝑔 (S𝑠 ) as de!ned in Section 3.1.
After processing all query samples or all coalitions are fully evalu-
ated, the work$ow will be terminated. Then the leader computes
the estimated Shapley value 𝑃 (𝑄) for each 𝑄 ⇐ P.
Complexity Analysis Let 𝑏𝑐 be the average number of the candi-
dates and 𝑏𝑡 be the average query samples during the evaluation.
For each participant, the complexity of retrieving the candidates
from the global hash table is 𝑈 (𝑏𝑡𝑏𝑐 ). Thus the overall compu-
tation complexity is 𝑈 (𝑏𝑡𝑏𝑐𝑀 +𝑢𝑏𝑐 ), signi!cantly lower than
𝑈 (𝑢𝑏𝑡𝑏𝑀) of the naive implementation of PS!MI.

As we will show in the experiments in Section 5.4, 𝑏𝑡𝑏𝑐 is
much smaller than the involved samples of naive work$ow 𝑢𝑏𝑡𝑏 .

4.5 Security Analysis
Below we analyze the security guarantee of our PS!MI. We consider
the semi-honest model [16, 24, 58], a commonly used threat model
used in FL [17, 32, 59]. That is, every party follows the protocol but
it tries to infer other parties’ private data based on the messages
received. Some existing works [22, 24] assume that the server does
not collude with other parties, but this assumption may not hold in
practical VFL scenarios. Other related works [31, 67] rely solely on
a naive split learning framework, which is vulnerable to emerging
attacks [25, 38, 50, 61] in VFL. In contrast, our PS!MI can e"ectively
ensure the security of features, labels, and identities.
• Local features on each participant are fully protected since they

are never shared with other parties. In PS!MI, each participant
only sends the partial distances 𝑜𝐿 computed over the trans-
formed features. Even if some attackers attempt to reconstruct
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Table 3: Statistics of the experiment datasets.

Datasets Bank Adult Web Heart SUSY
Instances 10,000 32,561 64,700 253,661 1,000,000
Features 11 123 300 21 18

local features from the transmitted distances, they can access
only the privacy-preserving features, as discussed in Section 3.2.

• Label is protected against any malicious party since the labels are
maintained by the leader and never shared with others. However,
if the leader colludes with others, the labels are naturally leaked.

• Identities are guaranteed against any malicious party due to the
pseudo-identities, as discussed in Section 4.1.

5 EXPERIMENTS
We outline our experimental settings in Section 5.1, compare PS!MI
with state-of-the-art baselines in Section 5.2, evaluate the designs of
PS!MI in Section 5.3, and perform an ablation study in Section 5.4.

5.1 Experiment Settings
Dataset. We conduct extensive experiments on various real-world
datasets, as detailed in Table 4. The evaluated datasets are collected
from existing works [24, 54] and online repositories [8, 27]. Each
dataset is randomly partitioned into a training set (70%) and a
test set (30%). We randomly split each dataset into four vertical
partitions and put each partition on a physical machine.
Baselines We compare our PS!MI with the following baselines,
each of which is the contribution estimation method in VFL. ✁
VFMI-SV uses MI as the utility and computes the Shapley valueby
evaluating all possible coalitions with the KNN-MI estimator. It
applies homomorphic encryption for data ✂ VF-PS [24] estimates
MI for participant groups using the KNN-MI estimator and assigns
contributions based on group averages. ✃ VF-CE [31] applies a
scalar-level attention mechanism within a mutual information neu-
ral network to measure the contributions. ✄ DIG-FL [54] uses logis-
tic regression as the proxy and approximates Shapley values using
the Hessian matrix during training. ☎ VFDV-IM [67] proposes to
utilize the historical training logs to accelerate one single evaluation.
It utilizes test accuracy as the utility function and requires evaluat-
ing all possible coalitions. Note that VF-CE and VFDV-IM adopt the
naive split learning framework. As discussed in Section 4.5, they
can not defend against the emerging attacks on VFL s models.
Metrics.We evaluate our PS!MI using three key metrics: estimation
precision, end-to-end running cost, and downstream task performance.
The estimation precision is quanti!ed by the Pearson correlation
coe#cient (PCC) between the Shapley value estimated by the base-
line and the actual Shapley value. The end-to-end running cost
is quanti!ed by the time (seconds) that the algorithm runs. The
downstream task performance is quanti!ed by the test accuracy of
downstream machine learning models.
Implementation. For communication between parties, we imple-
ment RPC communication with proto3 and gRPC. TENSEAL [2] is
a homomorphic encryption library built on top of Microsoft SEAL.

Table 4: Correlation between the estimated and the actual
Shapley values. The actual Shapley value is computed by
performing 2𝑀 ↓1 retraining (𝑀 is the number of participants),
using the same utility function as the corresponding baseline.
The #rst and second highest correlations are highlighted
in bold and underlined respectively. Note that \ denotes it
cannot #nish within a reasonable time limit (48h).

Method Bank Adult Web Heart SUSY
VFMI-SV 0.9865 0.9956 0.9876 \ \

VF-PS 0.6922 0.4395 0.5355 0.7421 0.8450
VF-CE 0.4508 0.9732 0.4860 0.8864 0.9182
DIG-FL 0.8894 0.9519 0.6617 0.4255 \

VFDV-IM 0.9352 0.9922 0.4416 0.9188 0.9211
PS!MI 0.9882 0.9922 0.9700 0.9233 0.9304

We adopt Adam [28] as the optimization algorithm for the logistic
regression model and the multi-layer perception model. We set the
batch size to 32 and terminate each task after 100 epochs. In our
PS!MI, the query set comprises 30% of each dataset. We set the
number of nearest samples 𝐿 to 5, the projection dimension size to
5, the threshold for adaptive coalition termination to 30% of query
set. All experiments are conducted on Amazon AWS, with each
party deployed on separate g4dn.xlarge EC2 GPU instances.

5.2 Main Results
In this section, we evaluate our PS!MI from three perspectives:
estimation precision, e#ciency, and e"ectiveness.
Estimation Accuracy. We !rst study the following question: How
does the correlation between the contributions estimated by the base-
line methods and the actual Shapley value compare? Table 4 reports
the Pearson correlation coe#cient (PCC) between participants’
contributions estimated by baselines and the actual Shapley value.
Among all methods, VFMI-SV achieves a strong correlation with the
ground-truth. This is expected, as it evaluates all possible coalitions.
However, it brings high computation, making it impractical for
larger datasets (e.g., it falis on Heart and SUSY within a reasonable
time). In comparison, PS!MI reaches similar or better accuracy. For
example, PCC between PS!MI estimates and actual values reaches
>0.97 on Bank, Adult, and Web and >0.92 on Heart, SUSY. Notably,
the predicted rankings by PS!MI are identical to the ground-truth
rankings. Other Shapley value-based methods, such as DIG-FL and
VFDV-IM, prioritize e#ciency but su"er from accuracy degradation.
Individual-based methods VF-PS and VF-CE focus only on individ-
ual contribution. They ignore marginal utility from coalitions, and
lack theoretical guarantees for fair valuation.
E!ciency. We then turn to another question: can our proposed
method outperform baselines regarding the end-to-end running cost?
Figure 7 reports the running time of our PS!MI and the baselines.
We can !nd our PS!MI signi!cantly faster than all baselines.

First, our PS!MI is signi!cantly faster than the Shapley value-
based methods VFMI-SV, DIG-FL, and VFDV-IM. Unsurprisingly,
VFMI-SV is the slowest across all datasets. The poor performance
of VFMI-SV is attributed to two reasons: repeated 2𝑀 ↓ 1 evaluation
model retraining and the high cost of homomorphic encryption

3567



���

���

���

��� 	
�	

��� ��


��	


���

��

��"�

���

���

���
��	��

��
�
����


���

���

��

��& %

���

���

��	
���

�

		��
���


�����


	� 
��

���

���

��	

����

���	�

�����

����


���� ����

���#%

���

��	

����

�
��




����

����

��
	

���


����

��
!

��
$�

������� ����� ��
���� 
�
��� ���	� �������&#$�

Figure 7: PS!MI vs. the baselines regarding running time. FAIL denotes that it cannot #nish within a reasonable time limit (48h).

Table 5: Test accuracy on di"erent downstream tasks. We select the top 50% participant based on the estimations of the baselines
and involve them train three models (KNN, LR, MLP). The highest test accuracy among the baselines is highlighted in bold.

Method KNN LR MLP

Bank Adult Heart Bank Adult Heart Bank Adult Heart

VF-PS 0.7752 0.7991 0.8861 0.78 0.8379 0.9839 0.819 0.8422 0.9065
VF-CE 0.7752 0.7991 0.889 0.78 0.8379 0.9839 0.8218 0.8422 0.9064
DIG-FL 0.7945 0.7968 0.889 0.7988 0.7546 0.9791 0.801 0.7569 0.9064
VFDV-IM 0.8200 0.7968 0.8861 0.8093 0.8379 0.9834 0.8563 0.8422 0.9065
PS!MI 0.8200 0.8011 0.889 0.8093 0.8427 0.9839 0.8563 0.8473 0.9064
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Figure 8: PS!MI vs. baselines regarding communication cost.

(HE) operations. In particular, the speedup of our proposed PS!MI
over VFMI-SV is more than 500→ on Bank and more than 100→
on other datasets. While DIG-FL requires only a single LR model
training over all participants, it remains the second slowest due
to its reliance on HE for protecting forward outputs. VFDV-IM is
also much slower than PS!MI because it necessitates evaluating all
possible coalitions. For instance, on Bank, PS!MI is 41→ and 45→
faster than VFDV-IM and DIG-FL, respectively.

Second, compared to individual-based methods that fail to ensure
fairness among data owners, our PS!MI still outperforms both VF-PS
and VF-CE. VF-PS is much slower than our PS!MI and VF-CE since it
requires measuring the utilities for multiple coalitions and employs
HE to protect the transmitted data. For instance, PS!MI achieves a
41→ speedup over VF-PS on Bank and 32→ on Adult. Meanwhile,
VF-CE is slightly slower than PS!MI across some datasets, as it
requires only a single training iteration over the entire participant
coalition and employs a naive split-learning framework without
incorporating additional privacy protection mechanisms.

Figure 8 shows PS!MI also incurs the lowest communication cost,
aligned with its runtime e#ciency. For instance, it reduces the cost
from 4.0 → 104 to 1 on Bank compared to VFMI-SV. We report the
full results in our technical report [11].
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Figure 9: E"ect of DP parameters 𝑅 and 𝑆 . 𝐿 represents the
number of nearest samples identi#ed in DP-MI.

E"ectiveness. To validate the e"ectiveness, we run the down-
stream classi!cation tasks using three ML models (KNN, LR, MLP)
on three datasets (Bank, Adult, Heart). Speci!cally, we select the
top 50% participants based on the SV estimated by the baselines and
involve them train the downstream ML models. Table 5 reports the
test accuracy of three downstream ML models. The results show
that our proposed PS!MI can achieve high performance in all mod-
els across all datasets. For example, on Bank with KNN, our PS!MI
achieves 4.5% higher than VF-PS and VF-CE. Notably, VFDV-IM also
performs well. This is because it exhaustively evaluates all possible
coalitions, which contributes to its high accuracy. However, this
comes at a high computational cost—its total evaluation time far
exceeds that of training the downstream models. Overall, PS!MI of-
fers both accuracy and e#ciency. Its model-agnostic utility ensures
robust and unbiased participant selection across architectures.

5.3 Micro Results
Below, we evaluate the designs in our proposed PS!MI.
DP Parameters. Below we evaluate the performance of PS!MI
under di"erent privacy settings. Speci!cally, we vary the di"erential
privacy parameters: the privacy budget 𝑅 and the probability 𝑆 .
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Figure 10: E"ect of projection dimension size 𝑉 . 𝐿 represents
the number of nearest samples identi#ed in DP-MI.

Figure 9 reports the PCC between the estimated and the actual
Shapley value. We can observe a key trade-o": as 𝑅 and 𝑆 increase,
estimation accuracy improves. This improvement comes at the cost
of weaker privacy guarantees, as less noise is added. Notably, PS!
MI remains robust even under relatively strong privacy settings.
When 𝑅 ranges from 2 to 4 and 𝑆 ranges from 10↓8 to 10↓5, the PCC
still exceeds 0.90. This robustness originates from our di"erentially
private mutual information estimator. As proven in Section 3.2, the
squared Euclidean distance in the projected feature space serves as
an unbiased estimator of distances in the original space.
Projection Dimension Size. Figure 10 illustrates the trade-o"
between projection dimension 𝑉 , estimation accuracy, and compu-
tational e#ciency in PS!MI. We observe that the Pearson correla-
tion coe#cient (PCC) plateaus beyond 𝑉 > 5. This aligns with the
Johnson-Lindenstrauss lemma [26], where low-dimensional em-
beddings often preserve pairwise distances su#ciently. Conversely,
runtime scales quadratically with 𝑉 . Critically, PS!MI achieves near-
optimal PCC at 𝑉 = 5, with only 27% running time required for 𝑉 =
1000. This highlights the practical advantage of low-to-moderate 𝑉
in balancing privacy-utility e#ciency.
Scalability Evaluation. Below we study the scalability of the base-
lines. Figure 11 reports the running time of Shapley-based methods
with varying numbers of participants (4/8/12/16/20) on Adult and
Web. To reduce running time, we apply strati!ed sampling, with all
methods evaluating 2𝑀/2 coalitions. The results show that PS!MI
consistently maintains the fastest execution time. DIG-FL grows
slowly in runtime due to Hessian approximation, which requires
only one evaluation but yields lower accuracy. Moreover, Hessian
approximation depends on sample size, making it unsuitable for
large datasets (e.g., it fails on SUSY in Figure 7). In contrast, PS!MI
remains e#cient even with larger datasets and more participants.
Properties of the Shapley value. Below we simulate two com-
monly encountered real-world behaviors: data replication and low-
quality data. These correspond to two fairness properties of Shapley
value: symmetry and zero element. Table 6 reports the results on
Bank and Adult, each partitioned into four participants {𝑀𝑇 }4𝑇=1. ✁
Symmetry: The same contribution brings the same payo#. We dupli-
cate the data in 𝑀4 to create a new partition 𝑀 ↗4 and apply PS!MI to
estimate Shapley values for {𝑀𝑇 }4𝑇=1 ↔ {𝑀 ↗4}. We observe that 𝑀4 and
𝑀 ↗4 receive nearly identical Shapley values. For example, on Adult,
the values are 0.108 and 0.109 respectively, di"ering by only 10↓3.
This con!rms that PS!MI approximately preserves the symmetry
property. ✂ Zero Element: No contribution, no payo#. We simulate
low-quality data by assigning meaningless input (e.g., all set to 0)
to 𝑀 ↗4. Ideally, this participant should have little to no contribution.
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Figure 11: Scalability evaluation. The y-axis is the running
time, and the x-axis is the number of participants.

Table 6: Properties of the Shapley value estimated by PS!MI.

Properties Dataset P1 P2 P3 P4 P4’

Symmetry Bank 0.333 0.060 -0.035 0.320 0.322
Adult 0.360 0.289 0.134 0.108 0.109

Zero
Element

Bank 0.210 0.358 -0.027 0.776 0.005
Adult 0.304 0.354 0.123 0.250 -0.003

Table 7: Comparison of sampling strategies on Bank Dataset
(𝑢 = 2𝑀↓1). Best-performing method is highlighted in bold.

Method PCC MAE Time(s)
Monte Carlo 0.9522 0.97 122.4

Ours 0.9836 0.75 36.1

As shown in Table 6, the Shapley value assigned to 𝑀 ↗4 drops close
to zero: 0.005 on Bank and -0.003 on Adult. This shows that PS!
MI down-weights uninformative data, satisfying the zero element
property. In summary, PS!MI treats identical data sources fairly and
e"ectively !lters out unhelpful participants.

5.4 Ablation Study
Below we conduct an ablation study to investigate the impact of
sampling strategy, involved samples, and time cost in PS!MI.
Sampling Methods We compare our proposed sampling strategy
with the Monte Carlo sampling (MC) method. Table 7 reports PCC
and the mean average error (MAE) between the estimated and the
actual Shapley value under di"erent sampling strategies. The results
show that our proposed method is much faster than the MCmethod
and reaches high estimation accuracy. As discussed in Section 3.3,
MC requires evaluating many coalitions, and each marginal contri-
bution only updates one participant’s Shapley value. In contrast,
our method reuses coalition utilities across participants, enabling
more e#cient and accurate estimation with fewer evaluations.
Involved Samples. Figure 12 reports the number of samples in-
volved in estimating the Shapley value (𝑏𝑐𝑏𝑡 in Section 4.4). The
results show that our optimized implementation can reduce the
involved samples by orders of magnitude, e.g., from 2.03 → 1011
to 8.05 → 108 on the Heart dataset. The naive work$ow requires
computing all samples’ distances for a query and enumerating the
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Figure 12: Ablation study on involved samples. (i) candidate
pruning with LSH (L); (ii) batched Querying and Hashing (B);
(iii) adaptive Termination (A).

���

	��

���
	



�
�

��� ���
��

�����

���

��	

�������	
�������	


��
����
��	
����

��		����


����



��

�
�
�
�

����� ��� ��	 ����	 ����	��

Figure 13: Ablation study on time cost. (i) candidate pruning
with LSH (L); (ii) batched Querying and Hashing (B); (iii)
Adaptive Termination (A).

entire query set for di"erent coalitions. In contrast, our proposed
optimization strategies can avoid repeated computation.
Time Cost. As shown in Figure 13, PS!MI also achieves notable
runtime improvements, such as a 13→ speedup on Heart com-
pared to the naive work$ow. In line with the involved samples,
the gains stem from three key optimizations: ✁ the LSH-based can-
didate pruning reduces the number of distance computations, ✂ the
batched candidate checking allows all coalitions to be evaluated in
one pass through the query set, ✃ the adaptive termination mech-
anism dynamically skips unnecessary queries. Notably, naively
integrating LSH into the naive work$ow increases runtime due to
repeated hash table construction per coalition. In contrast, PS!MI
amortizes indexing overhead via the batched candidate checking,
ensuring LSH accelerates rather than impedes performance.

6 RELATEDWORK
Vertical Federated Learning (VFL). VFL enables distributed par-
ticipants to jointly train ML models over the partitioned features,
which has attractedmuch interests inmany real-world cross-enterprise
collaborations [1, 37, 41, 43, 56]. Existing methods fall into three cat-
egories based on how private features are handled.✁Cryptographic
works [14, 16, 58] employ the secret sharing scheme and homomor-
phic encryption to provide desirable privacy guarantees. However,
their design involves sophisticated protocols and time-consuming
computation primitives to achieve zero knowledge disclosure. ✂
Di"erential privacy-based works [36, 59, 65] usually randomly per-
turbs the intermediate data (e.g., features, gradients) via noises. DP
inevitably yields a trade-o" between privacy guarantee and utility
guarantee. ✃ Split learning-based works [3, 51] use di"erent local

bottom models for the participants to process private features, and
then aggregate the forward activations to make predictions (i.e.,
via the top model). However, they su"er several data leakage prob-
lems and fail to convey provable security guarantees [15, 16, 50].
Some works apply cryptographic methods [19, 32] and di"erential
privacy to protect the intermediate results.
Data Valuation in Vertical Federated Learning. Due to the
great potential for applications, various e"orts have been devoted
to developing concepts of data value in VFL. Jiang et al. [24] pro-
pose VF-PS, using mutual information (MI) to evaluate participant
importance while adopting homomorphic encryption for privacy
protection. Li et al.[31] introduce a mutual information estimator
based on split learning with scalar-level attention as a proxy for
contribution. Although e#cient, both methods overlook marginal
contributions and fairness, and often sacri!ce accuracy due to sim-
pli!ed heuristics. To improve fairness, Wang et al. [53] and Han
et al. [18] employ the Shapley value (SV) to capture participant
contributions. However, their methods require retraining for each
coalition and rely on access to feature or label distributions, in-
curring high computational overhead and privacy risks. Wang et
al.[54] propose DIG-FL to approximate SV during training, avoiding
repeated retraining. But DIG-FL still su"ers from accuracy degra-
dation and runtime overhead due to heavy use of homomorphic
encryption. Zhou et al.[67] improved e#ciency by reusing histori-
cal training logs, but their method still evaluates all coalitions and
lacks privacy preservation. Existing methods optimize accuracy,
e#ciency, or privacy individually, but none achieve all three. To
our knowledge, our work is the !rst to achieve these three goals
simultaneously in vertical federated data valuation.

7 CONCLUSION AND FUTUREWORK
In this work, we propose a vertical federated data valuation frame-
work, which achieves estimation accuracy, execution e#ciency, and
data privacy at the same time. We theoretically formalize utility
using mutual information and design a novel di"erential privacy
mutual information estimator (DP-MI) for accurate and private esti-
mation. For practical Shapley value computation, we further design
strati!ed sampling, LSH-based pruning, batched candidate sharing,
and adaptive termination for e#cient execution. Experimental re-
sults validate the accuracy, e#ciency, and e"ectiveness of PS!MI.
One limitation of this study is that our PS!MI may overlook the
importance of individual features within participants’ data. Since
our focus is on quantifying the value of groups of features (i.e., per-
participant), we may miss !ne-grained contributions at the feature
level. An important direction for future work is to develop valua-
tion strategies that can simultaneously measure the contributions
at both the individual feature and participant levels.
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