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Abstract

Zero-shot Relation Triplet Extraction (ZeroRTE) aims to extract
relation triplets from texts containing unseen relation types. This
capability benefits various downstream information retrieval (IR)
tasks. The primary challenge lies in enabling models to generalize
effectively to unseen relation categories. Existing approaches typ-
ically leverage the knowledge embedded in pre-trained language
models to accomplish the generalization process. However, these
methods focus solely on fitting the training data during training,
without specifically improving the model’s generalization perfor-
mance, resulting in limited generalization capability. For this rea-
son, we explore the integration of bi-level optimization (BLO) with
pre-trained language models for learning generalized knowledge
directly from the training data, and propose a generative meta-
learning framework which exploits the ‘learning-to-learn’ ability of
meta-learning to boost the generalization capability of generative
models.

Specifically, we introduce a BLO approach that simultaneously
addresses data fitting and generalization. This is achieved by con-
structing an upper-level loss to focus on generalization and a lower-
level loss to ensure accurate data fitting. Building on this, we sub-
sequently develop three generative meta-learning methods, each
tailored to a distinct category of meta-learning. Extensive exper-
imental results demonstrate that our framework performs well
on the ZeroRTE task. Our code is available at https://github.com/
leeworry/TGM-MetaLearning.
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1 Introduction

The purpose of relation triplet extraction (RTE) is to extract triplets
of the form (head entity, tail entity, relation label) from unstructured
text. For example, given the sentence “Washington is the capital
of the US.A” in Fig. 1 (a), RTE aims to extract the triplet (head
entity: Washington, tail entity: the U.S.A., relation: capital of). RTE
can transform unstructured texts into structured knowledge, which
is valuable for various downstream information retrieval IR tasks
[10, 19].

Existing studies followed standard deep learning and have achieved
impressive performance in supervised relation extraction (RE) [32,
34] or semi-supervised RE [20] with sufficient or limited labeled
data. Their training process can be formulated in Equation 1.

. 13

wp ar‘%gym N ; 2(w(xi), yi), (1)
where w; is the optimal weight vector w, parameterized by 0, that
minimizes the loss function, x; and y; is the input feature vector and
corresponding golden label for i-th sample separately, and ¢ can
be cross-entropy loss for classification, or negative log-likelihood
(NLL) for language models. Although successful in many areas, stan-
dard deep learning methods often lack sufficient data in real-world
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Figure 1: An illustration of the RTE task and the difference
between existing methods for ZeroRTE.

scenarios. This scarcity limits the training of models on less com-
mon relations, making the enhancement of model generalization
to handle unseen relations a critical research challenge.

As a result, many researchers are focusing on the generalization
problem in RE, with zero-shot RTE being the most challenging.
Along these lines, Chia et al. [2] firstly introduced the ZeroRTE
task to extract unseen relations and their corresponding entities.
The purpose is to extract relations and entities that have not been
seen before, based on training data [1, 15].

Existing ZeroRTE methods treat the generalization issue as a
distribution shift problem, operating under the assumption that the
distributions of the training and test datasets are distinct. As illus-
trated in Fig. 1 (b, c), existing methods are generally classified into
two approaches. One category involves data augmentation tech-
niques that leverage the text generation capabilities of language
models to create training data for unseen relations. The other ap-
proach involves using regularization methods to constrain model
capacity and retain semantic knowledge, thus enhancing its gener-
alization performance.

Based on synthetic data of unseen relations, models can adapt
to the new distribution, the process can be formulated as follows:

w; =arg min% Z £(w(xi),yi), 2)

wevy ieDsyn

where D3Y" is the synthetic data set generated by language models.
For example, RelationPrompt adopts a pre-trained generative model
(GPT-2) to generate synthetic samples for unseen relations. KBPT
uses a prompt model to synthesize training samples [6].

The data augmentation approach has two primary limitations.
Firstly, the model’s performance is constrained by the quality of
the generated text, which can be of low quality since the text gen-
erator operates without ever having seen real samples, making
the output quality unpredictable and potentially unreliable. Sec-
ondly, this method lacks efficiency. The model requires retraining
to accommodate new classes, which is time-consuming [37].
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Language regularization methods design constraints to force
models to retain generic semantic knowledge in order to adapt to un-
seen relation categories. For example, PCRED employs a knowledge-
based prompt to increase performance in ZeroRTE [13]. Kim et al.
[11] transforms ZeroRTE into a template-filling paradigm, leverag-
ing the model’s pre-existing knowledge to effectively generalize to
unseen relations. The process can be formulated as follows:

wg = arg min
wey

N
% D e(wxi, P),yi) + AR(w) |, (3)
i=1

where w(x;, ) denotes the model’s prediction based on input data
x; augmented with a prompting phrase p. This prompting phrase p
can encapsulate pre-trained knowledge, guiding the model to better
leverage such information for predictions. By adjusting the content
and structure of the prompting phrase, one can effectively integrate
pre-trained knowledge into the model’s prediction process, thereby
enhancing model performance and generalization capabilities. R(w)
serves as a regularization term quantifying the disparity in model
parameters w and pre-trained knowledge, with A controlling the
weight of the regularization term during optimization. Tuning A
balances the model’s training performance and retention of pre-
trained knowledge. Since pre-trained language models contain a
vast amount of knowledge unrelated to ZeroRTE, it is challenging to
design appropriate regularization terms that effectively activate the
relevant capabilities. Moreover, the model’s generalization ability
relies heavily on pre-training knowledge while neglecting the task-
specific knowledge provided in the current training data, resulting
in the limited generalization of the model.

The key to improving model generalization performance is to
capture as much generalized knowledge as possible from the train-
ing data in addition to leveraging pre-trained knowledge. Therefore,
the training target becomes learning RTE and learning generalized
knowledge. These two issues are intertwined, and balancing them is
challenging when using only one single training objective function.
In order to balance the two targets, we propose a generative meta-
learning framework based on bi-level optimization (BLO) [21]. The
standard BLO problem contains two levels of optimization tasks:

min F(x,y),s.t.y € S(x), (4)
xeX

where y € R" and x € R™ are respectively referred to LL and UL
variables, F is the UL objective, and S(x) is the solution of the
LL subproblem. Specifically, the UL subproblem in the context of
ZeroRTE pertains to the discovery of a relational triplet extraction
pattern conducive to enhancing the model’s ability to generalize
across novel categories, and the LL subproblem involves the compre-
hensive acquisition of triple extraction knowledge embedded within
the training dataset. In addition, there are various meta-learning
techniques that can aid in improving generalization. Therefore,
we further explored the combination of three meta-learning tech-
niques including metric learning, gradient optimization, and model
architecture adjustments.

In summary, our contributions are as follows.

o This work presents the first application of BLO to enhance
the generalization performance of ZeroRTE tasks, thereby
establishing ZeroRTE on a novel paradigm.
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e We innovatively developed three types of generative meta-
learning techniques. These advances further improve the
effectiveness of the model.

o Detailed experimental analysis demonstrates the effective-
ness of the proposed framework. Additionally, by comparing
the performance of different meta-learning methods, we con-
clude that the design of meta-learning should be consistent
with the schema of the pre-trained model.

2 Related Work

2.1 Zero-shot Relation Triplet Extraction

The extraction of the ZeroRTE is a challenging but valuable task in
RE, and is first proposed by Chia et al. [2]. In ZeroRTE, the model
needs to learn the general knowledge of RTE based on the training
data under the known relation categories, and then extract the
unseen relations and the corresponding entities.

In addressing this issue, current ZeroRTE research has evolved
into two main categories. The first category typically leverages data
augmentation to improve the model’s generalization. For example,
a method called RelationPrompt employs synthetic data of unseen
relations [2]. This approach utilizes pre-trained BART [16] and
synthetic data derived from GPT-2 [24] to improve generalization
specifically on unseen relations. Building on this premise, numerous
methods incorporate external knowledge to enrich the quality of
synthetic data pertaining to unseen relations [5, 6]. Obviously, these
methods cannot adapt to unseen relations without tuning.

Another line emphasizes stressing the incorporation of prior
knowledge in the pre-trained model to improve the generalization.
For instance, Kim et al. [11] extends ZeroRTE to a template comple-
tion task, leveraging the model’s knowledge to intuitively adapt to
novel relations. However, a key limitation of these approaches lies
in the neglect of optimizing model generalization throughout the
training process. Therefore, this paper attempts to improve model
generalization performance from a BLO perspective.

2.2 Bi-level Optimization

The origin of BLO can be traced to the domain of game theory and
is known as Stackelberg competition [21]. BLOs are hierarchical in
nature, where the feasible space of the upper-level (UL) problem is
constrained by the solution set mapping graph of the lower-level
(LL) problem (i.e., the second task is embedded within the first one).

A range of machine learning methods, such as hyper-parameter
optimization, adversarial training, deep reinforcement learning,
and meta-learning, involve closely interconnected sub-tasks. For
instance, adversarial training comprises an UL objective discrimi-
nator (distinguishing real samples from generator-generated data)
and a LL objective generator (producing samples that the discrimi-
nator cannot confidently classify as real or fake). Similarly, deep
reinforcement learning includes two objectives: a policy model
responsible for action decisions and a value function model evalu-
ating the quality of policies. By employing BLO, complex tasks can
be decoupled to enhance model performance.

Our framework must account for the various scenarios in BLO
problems, particularly when the LL problem has multiple optimal
solutions. It becomes crucial to determine the best solution in such
cases and handle them based on an optimistic BLO assumption [3].
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2.3 Meta-learning

Meta-learning is a subfield of machine learning that focuses on
developing algorithms and models capable of learning how to learn
efficiently and effectively. Due to the ability to improve the gen-
eralization capacity of machine learning models, it has attracted
great interest in recent years. Meta-learning usually consists of
two modules. One captures meta-knowledge (common knowledge
across tasks), and the other models task-specific knowledge learned
by the base learner. The key is to find meta-knowledge in this com-
plex process. From the perspective of BLO, meta-learning can be
formulated as follows:

M
®* = argmin Z [meta (ng,i(rlc)e; w;(l), ) (5)
@ =1
s.t. 050 (o) = argeminlmSk(DgZirZ(ei);WQ;w), (6)

|meta ltask

where and respectively refer to the UL and LL objectives,
w represents the meta knowledge that needs to be learned from
different tasks, and 6 represents the parameter in the model.

Conventional categorizations of meta-learning methods [14, 33]
can be classified to metric-based, model-based, and optimization-
based methods. The metric-based methods [12, 27, 31] aim to learn
an appropriate distance metric for few-shot classification and have
been successfully applied to some few-shot and zero-shot tasks [8,
22]. The model-based methods [18, 35, 36] involve a task specifica-
tion to directly generate or modulate model weights. The optimization-
based methods [4, 23, 26] focus on incorporating optimization
within the learning process to learn an optimized initialization
of model parameters.

Meta-learning offers a promising approach to addressing various
challenges, particularly in the context of generalization. However,
its potential remains largely unexplored in the ZeroRTE domain.
In this work, we make the first attempt to incorporate BLO and
meta-learning into the ZeroRTE task. To this end, we propose a
generative meta-learning framework that eliminates the need for
generated data and directly learns task-specific meta-knowledge
during the training process.

3 Methodology

3.1 Problem Formulation

Definition 1 (RTE) Given a piece of text s = (w1, wa, ..., wy), the

RTE task aims to extract the relation triplets T = {t', %, ...,t°} in s.
i (i 5i iy i 5i .

In each t'= (ehead’ €rair T ), €head and €, i1 2T€ the head and tail

entities, respectively, and r! € R is the relation between é
. head
1

L Where R ={r1, .., r|g|} is a set of predefined relations.
Definition 2 (ZeroRTE) Given a seen dataset Dg and an unseen
dataset Dys, the goal of ZeroRTE is to extract triplets Ty; in Dy
by learning knowledge from Dg. In the zero-shot setting, the seen
relation set Rg ={ry, ..., |} is disjoint with the unseen relation set
Ry ={rn+1, - r|n+m|}, ie., Rs N R, = 0, where n and m are the sizes
of the seen and unseen relations, respectively.

and

é

3.2 Framework Analysis

Existing ZeroRTE tasks are usually based on various pre-trained
generative language models (GLMs), such as BERT, BART, T5, etc,
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that are usually based on the Transformer architecture. The chal-
lenges of introducing BLO in these methods are as follows:

Challenge 1. What type of partition can naturally decou-
ple ZeroRTE into upper-level and lower-level sub-problems,
facilitating subsequent model optimization? In the intricate
ZeroRTE tasks, the shared meta-knowledge manifests in the un-
seen tasks, necessitating the UL task to grasp inter-task knowledge,
while the LL task focuses on acquiring task-specific insights. This
paper approaches model design from the task level, randomly gen-
erating a large number of tasks from the training set. LL tasks learn
knowledge specific to individual tasks, while UL tasks are responsi-
ble for capturing generalizable patterns across tasks. In this process,
the model needs to make inferences based on the tasks. Therefore,
to effectively capture the input differences between tasks, we design
a task-aware generative model.

Challenge 2. Can the application of different techniques
(metric-based, model-based, and optimization-based) on the
Transformer architecture further enhance the model’s gen-
eralization performance? In addition to BLO, several supple-
mentary methods can also enhance the model’s capacity to effec-
tively capture cross-task meta-knowledge. Existing meta-learning
studies demonstrate that metric-based approaches, model-based
techniques, and optimization-based strategies all contribute to en-
hancing the model’s generalization capabilities. How to smoothly
combine these modules with the existing knowledge in the pre-
trained model is a challenge. In order to compare the impact of
integrating these methods in detail, this paper redesigns the re-
cursive generation process of language models, introduces new
processes (metrics, models, optimization), and strives to further
improve the generalization potential of GLMs.

3.3 Model Overview

An overview of our proposed generative meta-learning frame-
work is illustrated in Fig.2. To implement BLO in GLMs, we ini-
tially craft a task-aware generative model (TGM) capable of as-
similating meta knowledge across diverse tasks, as shown in Fig.2
(a). Subsequently, we leverage different meta-learning methods
for enhancing the models. Specifically, we introduce three gen-
erative meta-learning methods rooted in distinct meta-learning
categories: metric-based generative meta-learning (TGM-Metric)
based on metric-based meta-learning, model-based generative meta-
learning (TGM-Model) based on model-based meta-learning, and
optimization-based generative meta-learning (TGM-Optimization)
based on optimization-based meta-learning, depicted in Fig. 2 (b)-

).

3.4 Task-aware Generative Model

To achieve BLO within ZeroRTE, our model must possess the capa-
bility to discern between various tasks. As a result, we introduce a
novel prompt for GLMs to encode task information. This approach
enables the model to extract triplets corresponding to unseen rela-
tion labels at a task level rather than a sample level.

The input structure of our generative model comprises two key
components. The first component entails the task information,
which serves to suggest a series of potential relation categories
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for the given task. The second part encompasses the current text
being processed. The format is as follows:

“Relation: Ry, Ry, ..., Ryy,. Context: Washington is the capital of the
US.A”

Note that m is the unseen relation number, and R; is the candidate
relation type in one task. For example, when m=5, a task prompt
might be “Relation: sitter, capital of, conflict, elector, direction.”.

In this way, the task-aware generative model will output the
relation triplets contained in the input sentence. The predefined
format is:

“Head Entity: Washington, Tail Entity: the U.S.A, Relation: capital
of”

Notably, the task information prompt can drive the generative
model to make selection among candidate relations, which is iden-
tical to the ‘learning to learn’ idea of meta-learning. As a result,
it forms a sound basis for the subsequent meta-learning methods.
Moreover, we perform multiple tasks in each epoch during train-
ing, and the optimization process is conducted across these tasks.
This forces the generative model to pay more attention to the task-
level information, and thus it can learn general knowledge across
different tasks.

The training for the generative model is to maximize the likeli-
hood L(D) in the data set D as follows.

|D|
to)=[] [] PenlsP), ()
i=1 (ht,r)€eT;

where (h,t,r) refers to the (head entity, tail entity, relation), s; is the
i-th input sentence in D, T; is the annotated relation triplets in s;,
and P represents the task information in the input.

In bi-level perspective, TGM model contains LL problem and UL
problem. It can be formulated as follows.

IDtrain‘

=[] ] Pw(Gtnls?), (®)
i=1  (htr)eT;
‘Dvall

=[] [] Pu@enis®), ©)
i=1 (htr)eT;

where wj represents the GLM’s parameters after LL optimization.
To improve the generalization, regularization terms are added to
penalize the output that does not conform to the predefined format:

Ltgm = LuL + LiL + AR(w), (10)

Following existing generative methods, we utilize the decoder
module in Transformer [30] to generate tokens in a recursive and
sequential manner. In this way, our generative model also generates
results in a predefined order. The difference is that we take the
task prompt into consideration. Given the input sentence s; and
the predefined order of head entity, tail entity, and relation, the
likelihood of our generative model is as follows:
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Figure 2: An overview of our proposed generative meta-learning framework for zero-shot RTE.

)= [] PtnIsP)

(ht,r)eT;

= 1‘[ P(h|s;,P) - P(t|si, h,P)
(h,t,r)eT;
-P((rlsi, b t, P). (11)

Note that the above decoding order is experimentally explored
to be optimal, and the effect of different extraction orders on the
model is detailed in the Section 4.7. Below we will show how TGM
can be integrated into three types of meta-learning methods.

3.5 Metric-based Generative Meta-learning
(TGM-Metric)

Metric-based meta-learning (MEML) methods learn the metric-
based connections behind objects. They typically map input sam-
ples into an embedding space and then use the nearest neighbor or
matching mechanism to label query samples based on the connec-
tions between their embeddings to those of labeled ones. By this
means, MEML methods can naturally generalize to new domains.

Inspired by the prototype-based methods [27, 31], we design a
novel feature mapping process with three prototypes output by the
decoder module and a matching network for predicting whether the
input tokens and the prototypes match. Since existing generative
language models follow a recursive and sequential generation man-
ner, we insert three special tokens ‘[HEAD]’, ‘[TAIL]’, and ‘[REL]’
before the relation triplet, to represent the head entity prototype,
tail entity prototype, and relation prototype, respectively:

‘[HEAD]: Washington, [TAIL]: the U.S.A, [REL]: capital of.

We then map the token embedding encoded by the encoder and
the prototypes output by the decoder to one same vector space
through a linear transformation, and then predict whether the

prototypes and the corresponding token embedding by a matching
network (one layer of neural network). The loss for training our
TGM-Metric is the combination of the loss of the generative model
and that of the matching network:

LMetric = LtGm + aLymatching (12)

where LT is the loss for the generative model to maximize Eq. 11
and generate the answer that conforms to the proposed format, and
Liatching is the loss for the matching network, and « is a trade-off
parameter.

IDtrainllr]—l ' .
Liatching = Y, Y CE(G/,MLP(E] ® E})),  (13)
i=1  j=1

where the MLP layer measures whether the ¢-th token embedding
El? matches the p-th prototype embedding Ef) ,and G{ is the ground-
truth of matching for the j-th token in the i-th sentence with the
prototype, ® denotes the concatenation, and CE is the cross-entropy
loss.

3.6 Model-based Generative Meta-learning
(TGM-Model)

Model-based meta-learning (MOML) focuses on improving the gen-
eralization ability of the model through an external module respon-
sible for modeling meta knowledge [7, 35]. In MOML, when the
external module deals with different meta-learning tasks, the mod-
ule will generate optimal parameters from the perspective of the
task for enhancing the inference process.

Following the MOML scheme, we explore how the external mod-
ule can improve the generative models. To this end, we first design
a prompt generator module for modeling task information. We then
input the newly generated parameters as encoded information into
the decoder module for adapting to the generation process. By this
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means, the task information and the encoder-encoded information
are concatenated together and forwarded into the decoder to per-
form the RTE task, which forms our TGM-Model. The training for
our TGM-Model is to maximize the likelihood L(D) in the training
set D:

|D| | 7]

o) =[] [] []rhrerisme))),

i=1 (ht,r)€eT; j=1

(14)

where P; represents the j-th task information prompt in the candi-
date task set 7~ for the i-th sentence. The BLO process is consistent
with the TGM model, in which the module for meta-learning is
only optimized in the UL task and not in the LL task. Therefore, its
formula is expressed as follows.

MLPWéT) - I]m, lf in UL

MLP e = (15)

MLP. (), ifinLL
Wo

3.7 Optimization-based Generative
Meta-learning (TGM-Optimization)

The optimization-based meta-learning (OBML) methods improve
the generalization ability from the perspective of optimization and
are typically model-agnostic [4, 23]. OBML aims to find the most
generalizable gradient direction among the gradients obtained by
different meta-learning tasks. These methods seek to adjust the
parameters of the neural network so that it can quickly adapt to
different tasks.

All existing ZeroRTE methods adopt the gradient descent for
training model. However, it does not consider whether the cur-
rent gradient direction can improve the generalization ability or
may overfit to training tasks. In contrast, our proposed task-aware
generative model provides the opportunity to find the optimal
gradient among different meta-learning tasks. In this subsection,
we further improve our generative model with an OBML method
named Reptile [23] which is mathematically similar to the classic
MAML [4, 23] but is simple to implement. By this means, we finally
get our TGM-Optimization model.

Formally, for an input sentence s;, the likelihood in our TGM-
Optimization is as follows:

|D| |7]

so=[] [] []eenisey,

i=1 (ht,r)€T; j=1

(16)

where P; represents the j-th task information prompt.
The optimization process of our TGM-Optimization model can
be defined as follows:

I
\I’<—\I’+e;Z(‘Pi—‘P),

i=1

17)

where ¥; is the updated parameter space on the i-th task which
is randomly sampled, n is the task number in each iteration, ¥ is
the model parameter space to be optimized, and € is a step-size
parameter.
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3.8 Inference

In order to preserve the general knowledge contained in the genera-
tive model as much as possible, the inference in our framework also
takes the form of the generative model. Specifically, TGM-Metric
utilizes meta-knowledge derived from metric learning to guide the
decoder in generating the correct output. In the TGM-Model, the
decoder uses meta-knowledge output by model-based meta-learner
to generate the triplets. TGM-Optimization directly generates RTE
results during inference. This is because the optimization-based
meta-learner only optimizes the gradient during training and does
not affect the inference process of the generative model.

4 Experiments

We conduct extensive experiments to verify the effectiveness of our
framework and answer the following research questions:

e RQ1: Can the incorporation of BLO enhance the generaliza-
tion capabilities of the current model?
RQ2: What factors influence the integration of the three
meta-learning techniques with models?
RQ3: What are the advantages of this approach compared
to the large language models (LLMs)?
RQ4: What is the time complexity of the model?

4.1 Experimental Setup

Datasets We evaluate our model on two public datasets. FewRel [9]
is a standard benchmark dataset for the few-shot RE task. Wiki-
ZSL [1] is generated with distant supervision from Wikipedia ar-
ticles and the Wikidata knowledge base [28]. The detailed data
statistics are shown in Table 1.

Table 1: Statistics for two datasets.
Dataset #Samples #Entities #Relations Sent_len
FewRel 54,000 72,954 80 24.95

Wiki-ZSL 94,383 77,623 113 24.85

Experimental Settings To make a fair comparison, we directly
leverage the data split provided by RelationPrompt [2]!. In this
setting, 5 random seeds are selected for the label selection process,
where 5 validation labels from the seen labels are used to select
sentences for early stopping and hyperparameter tuning, m unseen
labels (m € {5, 10, 15}) are selected for testing, and the remaining
sentences are treated as the training samples.

We use T5-base [25] as our pre-trained generative language
model. The learning rates of the generative model parameters and
other parameters are set to 3e-5 and 6e-4, respectively, and the
batch size for training is set to 16. We randomly generate ¢ different
tasks for each sample to improve the model’s ability to capture
connections between tasks and samples. For example, when m =
3 and t = 2, we will have two task prompts like R;;R;2R;3 and
R j1R jzR j3-

In RelationPrompt [2], the test data is divided into two parts
according to whether the sample contains a single triplet or multiple
triplets. This is unrealistic in practice because we cannot know the
number of triplets contained in each sample in advance. Therefore,
in our setting, the number of triplets is unknown, and the model

!https://github.com/declare-lab/RelationPrompt
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Table 2: Comparison results on FewRel. Except for the LLMs based method (MICRE), the best scores are in bold, and the second
best ones are underlined. All results are the average scores of 5 runs with the same seeds.

m=>5 m=10 m=15

Methods Synthetic Data Precision Recall F; Precision Recall F; Precision Recall F;

(1) TableSequence v 9.86 9.33 9.59 12.50 12.02 12.24 12.46 11.92 12.19
(2) RelationPrompt v 24.70 24.54 24.69 24.59 24.23  24.39 20.66 20.25 20.45
(3) KBPT v 24.14 2391 24.02 24.35 27.28 26.02 22.11 21.56 21.83
(4) ZS-SKA v 36.24 34.77 35.49 33.06 32.85 3295 26.11 2351 24.74
(5) NoGen-BART X 22.90 22.61 22.75 16.54 16.31 16.42 12.16 11.94 12.05
(6) NoGen-T5 X 25.90 25.58 25.74 16.42 16.19 16.30 13.01 12.75 12.87
(7) ZETT X 31.00 30.61 30.8 28.91 27.46 28.17 24.45 23.42 2392
(8) TGM X 36.87 36.43 36.65 27.16 26.76  26.95 23.86 23.40 23.63
(9) TGM-Metric X 3832  37.86 38.09  28.66  28.26 28.46 2449 2402 24.25
(10) TGM-Model X 38.16 37.70 37.93 27.98 27.57 27.77 24.38 23.89 2413
(11) TGM-Optimization X 39.40 3891 39.15 30.18 2977 29.97 2543 24.94 25.19

needs to actively decode multiple triplets during testing. This means 4.3 Main Results

that our evaluation setup is more critical than RelationPrompt.
Metrics We utilize the Micro-F1 score (F1) as the evaluation metric,
additionally reporting precision and recall for more analysis. All
results are averaged across five data folds with the same seeds.

4.2 Baseline Methods

The compared baselines are listed as follows: 1) TableSequence [32]
Following RelationPrompt, we adapt the RTE method to ZeroRTE
by training on synthetic data generated by RelationPrompt. 2) Re-
lationPrompt [2] is trained on the training set and synthetic data
generated by a fine-tuned GPT-2 [24]. 3) KBPT [6] incorporates
prior knowledge from ontological schemas and is trained on syn-
thetic data generated by a generative prompt model. 4) ZS-SKA
[5] also employs data augmentation through a word-level sentence
translation. 5) NoGen-BART is based on RelationPrompt and fine-
tunes the BART model only on the training data without synthetic
data. 6) NoGen-T5 is based on RelationPrompt but fine-tunes the
T5 model only on the training data without synthetic data. 7) ZETT
[11] treats zero-shot relational triplet extraction as a template filling
task and employs ranking methods to extract the relation triplet.

Within these methods, approaches 1-4 leverage data augmenta-
tion strategies to calibrate the model using synthetic data associated
with unseen relations. These methods necessitate retraining when
applied to unseen relations and lack natural generalization into
novel domains. On the other hand, methods 5-7 do not rely on
synthetic data and can be directly utilized when encountering new
relations.

“NoGen-BART” and “NoGen-T5” respectively fine-tunes the
BART-base and T5-base on the training data. It is notable that the
parameters of BART-base, GPT-2, and T5-base are 140M, 124M, and
220M, respectively.

We use the source code provided by the authors of TableSe-
quence ? and RelationPrompt 3. We re-train them using the optimal
hyper-parameters reported in their original papers.

Zhttps://github.com/LorrinWW W/two-are-better-than-one
3https://github.com/declare-lab/RelationPrompt

We present the comparative outcomes of our proposed models on
FewRel and Wiki-ZSL in Table 2 and Table 3 correspondingly. We
draw observations based on these results.

To address the question RQ1, we compare two models with the
same structure, TGM and NoGen-T5. As shown in Table 2 and Ta-
ble 3, the proposed TGM outperforms NoGen-T5 in all settings on
both datasets. Given that the NoGen-T5 model shares the exact
same architecture with the proposed TGM model, its superior per-
formance clearly indicates that the BLO process facilitates the GLMs
capable of capturing valid and generalizable knowledge across tasks.
This finding also suggests that decomposing a complex task like
ZeroRTE into UL and LL subtasks and simultaneously optimizing
them can significantly enhance generalization performance of the
models.

To answer RQ2, we compare three generative meta-learning
methods with TGM. Our proposed three generative meta-learning
methods can further improve the performance of the TGM model,
indicating that the meta-learning mechanism further boosts the
generalization capability of the basic generative model. After in-
depth analysis, we found that the TGM-Metric and TGM-Model
introduced new metric-learning modes and meta-learning modules.
Although these additions can be integrated with existing semantic
knowledge in Transformer, they damaged the semantic inference
ability of the model to a certain extent; while the TGM-Optimization
completely relies on the BLO mechanism to adjust the gradient
direction and does not introduce additional features for model gen-
eralization, and it is more consistent with the original semantic
capabilities of the pre-trained models. Therefore, we believe that
the optimization process should be designed with careful consid-
eration of how well it aligns with the model’s original knowledge.
This alignment directly influences the robustness of the model’s
generalization ability.

In order to analyze whether the stronger generalization of TGM-
Metric comes from the influence of pre-training knowledge, we
retain the structure of the T5-base model during training but reini-
tialize the model parameters. The experimental results show that
the accuracy of all models tend to 0. This means that a large part of
the model’s capabilities come from pre-training knowledge.

1377



SIGIR °25, July 13-18, 2025, Padua, Italy.

Wanli Li et al.

Table 3: Comparison results on Wiki-ZSL. Except for the LLMs based method (MICRE), the best scores are in bold, and the
second best ones are underlined. All results are the average scores of 5 runs with the same seeds.

m=>5 m=10 m=15
Methods Synthetic Data Precision Recall F; Precision Recall F; Precision Recall F;

(1) TableSequence v 15.51 11.86 13.46 10.64 551  8.07 8.67 555 7.08

(2) RelationPrompt v 24.91 20.46  22.39 19.27 16.19 17.57 14.20 12.31 13.48

(3) KBPT v 35.45 31.64 33.50 22.41 21.74 23.57 21.02 17.31 19.01

(4) ZS-SKA v 45.27 41.68 43.40 29.88 26.05 27.83 23.67 20.39 2193

(5) NoGen X 18.81 15.41 16.87 11.94 10.16 10.96 8.43 6.95 7.62

(6) NoGen-T5 X 19.21 16.52  17.66 12.25 10.33  11.19 9.05 7.48  8.19

(7) ZETT X 26.22 23.76 24.93 21.05 18.99 19.97 18.31 13.99 15.86

(8) TGM X 34.40 27.76  30.64 22.02 18.54 20.10 16.93 14.03 1534

(9) TGM-Metric X 37.35 30.17  33.25 24.77 20.96 22.54 20.42 16.86 18.47

(10) TGM-Model X 36.72 30.31 33.51 24.09 20.84 22.23 20.10 16.27 17.99

(11) TGM-Optimization X 4067 3342 36.56 2609 21.84 2373 2210 18.27 19.99
Table 4: Comparison results with LLMs on m = 5. involves computing mean and variance across features, which has a
Acc (FewRel) Acc (WikiZSL) Avg, tilme coinpl‘exit}:i ;i ~O(nd)aI:ESidEal co:nections fon{ain; g Eir;lple

element-wise addition and thus has a time complexity of O(n

1(\;/111)(;511(2)(LLaMA) ?Z;} 277.'3757 392.;5635 Thus, the time complexity of TGM is O(vn?d + nd? + nd + n)
TGM-Optimization 38.90 36.23 37.57 for one forward propagation, which simplifies to O(n?d) given

4.4 Comparison with LLMs

For RQ3, we analyze the outputs of MICRE and GPT-40. MICRE
[17] based on LLaMA [29] employs in-context learning technique
to tackle ZeroRTE. We also show the accuracy of GPT-4o in the
Table 4.

It can be seen that a complex system (GPT-40) will produce
uncontrollable and hallucinatory answers when dealing with Ze-
roRTE. Although we have explicitly restricted the output format of
GPT-40 in the prompt, GPT-40 always outputs some extra symbols
or sentences. Perhaps, simple models that learn straightforward
patterns offer a more efficient way to achieving intelligence.

4.5 Complexity Analysis

For RQ4, we conduct a complexity analysis. Both our proposed
method and existing baselines utilize the pre-trained GLMs M based
on the Transformer structure. The computational complexity pri-
marily depends on the backbone model M, which includes multi-
head self-attention, feed-forward networks, layer normalization,
and residual connections in each of its n layers.

The computation of [-th layer feed-forward network is formu-
lated as X! = o(X!W!). Where () is a non-linear activation
function, and W! is a feature transformation matrix € REXFi+1 For
simplicity, we assume the features at every layer are size-d. As such,
W is an d x d matrix. From the setting, we know d, = d.

We analyze the time complexity of the TGM by three high-level
operations:

T
i. Multi-head Self-Attention (So ftmax( %)V). We assume that

it has v head, then the time complexity is O(on?d)

ii. Feed-forward Network (o(X'W')) is a dense matrix multipli-
cation between matrices of size n X d and d X d. The time complexity
is O(nd?).

iii. layer normalization and residual connections (Layer Norm(X+
MultiHeadAttention(X)) and LayerNor(X + Feedforward(X)))

d << n.Both TGM-Metric and TGM-Model extend TGM with new
feed-forward neural networks, leading to a complexity of O(vn®d +
nd? +nd +n+nd?), still simplified to O(n?d). In TGM-Optimization,
we introduce a novel gradient update pattern that does not alter
the model structure or inference process, maintaining a complexity
of O(n%d).

In summary, the computational complexity of the proposed
framework aligns with that of other frameworks.

4.6 Impacts of the Relation Number in Prompt

Our prompt contains m candidate task information in the prompt
to facilitate the model to understand tasks. Following Relation-
Prompt [2], we assume m is known in training. However, this is
impractical in real-world scenarios. Hence we investigate whether
our model can cope with an unknown number of candidate rela-
tions. For this, we set the candidate relation number as r, and vary
it among {2, 5, 10, 15}. The results are shown in Table 5. It is clear
that a r smaller than m often results in a better performance . This
is natural since the model can focus more on the true task and is not
affected by redundant relations in the prompt. However, a too small
r like 2 will prevent the generative model from learning general
information across tasks and hurts the performance. This finding
also holds true for r=3, 4 for m=5, suggesting that a pre-determined
number of relations is not necessary. This flexibility represents
another attractive feature of our model.

Table 5: Impacts of the relation number r in the prompt.

FewRel F1(m=5) F1(m=10) F1(m=15)
r=2 37.38 26.83 20.34
r=5 39.15 31.49 26.08
r=10 37.84 29.97 25.90
r=15 36.70 28.72 25.19

4This infers that we actually do not need to set t=m. Instead, ¢ can be a relatively
small number like 5, which is another appealing property of our model.
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4 Relation Text RelationPrompt TGM TGM-Optimization N
Prediction Prediction Prediction
SI: Owned b is no longer a publicly Head entity: Head entity: Head entity:
¢ DIWReddY  traded company, since 100 % of its capital  Tail entity: Altice Group Tail entity: Altice Group Tail entity: Altice Group
is owned by Altice Group. Relation: owned by Relation: owned by Relation: owned by
Overati on the Apple TV has all of the func- Head entity: Head entity: Head entity:
S2: ]_)Lf‘“mg -tions of Siri on 10S 9; it can also respond  Tail entity: Apple TV Tail entity: [0S 9 Tail entity: [0S 9
system -y, requests specifically for the TV . Relation: operating system Relation: operating system Relation: operating system
(13 June, 1645-11 Head entity: Head entity: Head entity:
S3:  Religion  December, 1702) was a Roman Catholic Tail entity: cardinal Tail entity: cardinal Tail entity: Roman Catholic
\_ cardinal from 1690 to 1702. Relation: location Relation: religion Relation: religion Y,

Figure 3: Case study. The orange, blue, and green tokens respectively denote the head entity, tail entity, and relation. Incorrectly

extracted tokens are marked in grey.

4.7 Impacts of the Triplet Order

The decoder in Transformer generates tokens in a sequential man-
ner and the generative model needs a predefined triplet order. We
assume an HTR order in Sec. 3.4 and compare other two different
orders THR and RHT here, where ‘H’, ‘T’, and ‘R’ denotes the head
entity, tail entity, and relation, respectively. The results are shown
in Table 6.

Table 6: Impacts of different triplet orders on m = 5.

F1 (FewRel) F1(Wiki-ZSL) Avg.
TGMuTR 36.65 30.64 33.65
TGMrur 37.11 30.08 33.60
TGMguT 35.16 29.57 32.37

It can be seen from Table 6 that, two generative models with
the entity first order HTR and THR are better than that with the
relation first order RHT. The reason is that in the ZeroRTE task,
most entities are meaningful nouns, and the extraction of entities
does not change much under different relation categories. In this
case, performing the relatively easy entity extraction task first can
help the subsequent hard RE task.

4.8 Analysis on Hyper-parameters

We analyse the task number ¢ and the parameter a for balancing
the loss of meta learning and that of the GLMs in the TGM-Metric
model. Figure 4 shows the impacts of these two hyper-parameters.

From Fig. 4(a) and 4(b), we find that our two models become
stable when ¢ is larger than 3. Note even when t=1, our models
perform better than RelationPrompt since our prompt with multi-
ple relations can provide general knowledge across tasks. Fig. 4(c)
and 4(d) show that the optimal setting for « is about 0.5 on two
datasets.

4.9 Case Study

As shown in Fig. 3, we compare the results of RelationPrompt, TGM,
and TGM-Optimization on three sentences (denoted as S1, S2, and
S3).

S1 has a phrase ‘owned by’ which explicitly points out the rela-
tion. All three generative models can extract the correct answer for
such an easy task.

S2 includes the ‘operating system’ relation. RelationPrompt pre-
dicts the correct relation and a wrong tail entity since the training of
its extraction model depends on synthetic samples which may not
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Figure 4: Impacts of the hyper-parameters.

certainly contain ‘Apple TV’. In contrast, both our TGM and TGM-
Optimization can extract the correct triplet. Though our models
do not see samples with ‘operating system’ relation during train-
ing, the relation name has been used as the candidate in the task
prompt which will never be chosen as an answer. That is to say, the
model has got the implicit knowledge that ‘operating system’ does
not refer to ‘Apple TV’. This demonstrates the role of generalizing
knowledge across tasks.

S3 contains the ‘religion’ relation. RelationPrompt extracts wrong
tail entity and relation and TGM model guided by the task informa-
tion extracts the correct head entity but makes mistake on the tail
entity. TGM-Optimization obtains the completely correct answer.
We believe this is because TGM-Optimization retains the general
knowledge about ‘religion’ via meta-learning, which also proves
the value of meta-learning.

5 Conclusion

In this study, we discovered that existing generative language mod-
els have limited generalization capabilities in zero-shot learning
scenarios. To address this challenge, we propose an innovative
generative meta-learning framework that exploits the synergy be-
tween BLO and multiple meta-learning strategies. Our approach
effectively leverages the meta-knowledge embedded in training
datasets, leading to significant improvements.
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