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Graph is ubiquitous in various real-world applications, and many graph processing systems have been
developed. Recently, hardware accelerators have been exploited to speed up graph systems. However, such
hardware-specific systems are hard to migrate across different hardware backends. In this paper, we propose
the first tensor-based graph processing framework, TGraph, which can be smoothly deployed and run on
any powerful hardware accelerators (uniformly called XPU) that support Tensor Computation Runtimes
(TCRs). TCRs, which are deep learning frameworks along with their runtimes and compilers, provide tensor-
based interfaces to users to easily utilize specialized hardware accelerators without delving into the complex
low-level programming details. However, building an efficient tensor-based graph processing framework is
non-trivial. Thus, we make the following efforts: (1) propose a tensor-centric computation model for users to
implement graph algorithms with easy-to-use programming interfaces; (2) provide a set of graph operators
implemented by tensor to shield the computation model from the detailed tensor operators so that TGraph
can be easily migrated and deployed across different TCRs; (3) design a tensor-based graph compression and
computation strategy and an out-of-XPU-memory computation strategy to handle large graphs. We conduct
extensive experiments on multiple graph algorithms (BFS, WCC, SSSP, etc.), which validate that TGraph not
only outperforms seven state-of-the-art graph systems, but also can be smoothly deployed and run on multiple
DL frameworks (PyTorch and TensorFlow) and hardware backends (Nvidia GPU, AMD GPU, and Apple MPS).
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1 Introduction
Graph is ubiquitous in various real-world applications [30] such as social networks, recommendation
systems, biological analysis, etc. Many graph processing systems have been developed in the past
decade, which mainly fall into two categories: (1) shared-memory systems including in-memory
systems such as Ligra [58, 59], Galois [47], GraphMat [61], etc., and out-of-core systems such as
GraphChi [39], X-Stream [53], GridGraph [76], NXgraph [14], MiniGraph [77], etc.; (2) distributed
systems such as Pregel [43], PowerGraph [22], GRACE [64], GPS [55], Blogel [68], GraphX [23],
GraphD [69], SLFE [60], Grape [17], GraphScope [29, 67], etc.

Recently, to leverage the computation power of new hardware accelerators, GPU-based systems
have been developed to simplify GPU programming and balance workloads on massive GPU threads.
A pioneering work Medusa [75] develops an edge-message-vertex model to simplify parallel graph
processing on GPUs. A vertex-centric framework CuSha [37] uses G-shards and concatenated
windows to address irregular memory access. Frog [57] is an asynchronous graph system based
on hybrid coloring of graph vertices. Gunrock [65] proposes a data-centric model to manipulate
active vertex/edge subsets and several load-balancing strategies at different granularities. cuGraph
[18] is a vertex/edge-centric system which provides a new data structure to store and partition
graphs. GraphBLAST [70] is a linear-algebra-based graph framework on GPUs that exploits data
sparsity to reduce memory access. The CPU-GPU based graph systems adopt different strategies
to reduce data transfer, including performance modeling (TOTEM [20] and FinePar [71]), active
subgraph evaluation (Scaph [74]), and compact subgraph representation (Subway [54]). GraphGen
[48], FPGP [15], and ThunderGP [11] are graph processing systems accelerated by FPGAs.
However, the above hardware-accelerated graph systems are tailored for a specific type of

GPU/FPGA such as Nvidia GPU or Xilinx FPGA, and cannot be easily migrated to other hardware
backends such as Mac MPS and AMD GPU, not to mention other emerging hardware accelerators
driven by the development of Deep Learning (DL), such as Tensor Processing Unit (TPU), Neural
Processing Unit (NPU), etc. The underlying reason is that the characteristics and primitives of these
hardware are inherently different, and we have to exploit the hardware-specific features through
specialized low-level kernels such as NVIDIA CUDA and Xilinx Vitis to boost the performance.
In this paper, we propose the first general graph processing framework, TGraph, which can be

easily deployed and run on multiple hardware accelerators, including GPUs, TPUs, NPUs, and
others, uniformly called .XPUs in this paper. We build TGraph based on tensors, the computation
and manipulation of which have been significantly accelerated by the DL frameworks (PyTorch
[49], TensorFlow [1], MXNet [9], etc.) and their associated compilers and runtimes (TVM [10],
ONNX [45], etc.), which are collectively referred to as Tensor Computation Runtimes (TCRs). TCRs
provide a set of tensor operators for users to leverage the acceleration capabilities of underlying
specialized hardware, such as GPU, TPU, and NPU, for batch data processing without considering
their specific characteristics and primitives. Additionally, TCRs [10, 41] offer hardware-independent
optimizations, including operator fusion, operator sinking, and algebraic simplification, to enhance
the Intermediate Representation (IR) of the tensor program.Meanwhile, TCRs also provide hardware-
specific optimizations to enable efficient code generation for different hardware targets. For example,
PyTorch utilizes CUDA Streams (which is transparent to PyTorch users) to manage the execution
of the tensor operators to generate the highly optimized GPU codes. Besides the native support of
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DL models, TCRs have also exhibited their effectiveness in supporting non-DL systems, such as
Hummingbird [46] for traditional ML models and TQP [28] for relational queries.

Despite the above progress on non-DL data processing tasks, building an efficient graph process-
ing system that fully leverage the parallelism of tensor operators is a non-trivial task facing the
following challenges:
(1) Expressivity. How to design a unified tensor-based graph computation model to support a

wide range of graph algorithms? Existing GPU-based systems usually manipulate vertices/edges
with a finer granularity to balance the workload on massive GPU threads, which is not applicable
to our tensor-based system that prefers a large batch of data to fully leverage the parallelism of
tensor operators and reduce kernel launch overhead in tensor operators.
(2) Extensibility. How to shield the computation model from the detailed tensor operators so

that TGraph can be easily migrated and deployed across different TCRs and hardware backends?
We need to abstract a high-level computational model to make the system decoupled from the
underlying tensor operators in different TCRs.

(3) Scalability. How to efficiently handle large-scale graphs that cannot fit into the limited memory
of hardware accelerators? Compared to CPU, the memory capacities of XPU are usually limited,
thus scaling strategies based on tensors need to be designed.

To tackle the above challenges, we make the following efforts. First, we propose a tensor-centric
computation model which decomposes graph algorithms into a series of iterations consisting of two
steps: TENSORIZE to organize active vertices and their neighbors as tensors, andCOMPUTE to per-
form computation based on tensor operators. Furthermore, to maximally leverage the parallelism of
tensor computation, we abstract a set of graph operators (neighborSelect, vertexSelect, reconstruct,
etc.) based on tensor operators. TENSORIZE and COMPUTE can be easily implemented by these
graph operators to support a wide range of graph algorithms, thus achieving high expressivity.
Meanwhile, the abstraction of the two steps and five graph operators shields the system from
the detailed tensor operators so that TGraph can be easily migrated across different platforms,
and thus achieving high extensibility. Finally, to achieve high scalability, we propose tensor-based
graph compression and computation strategies to save space and accelerate computation, and
tensor-based partition and pipelined scheduling strategies to support efficient out-of-XPU-memory
computation. Our main contributions are summarized below.
• We propose a tensor-centric computation model, which provides two interfaces TENSORIZE
and COMPUTE to support the implementation of graph algorithms. We also abstract a set of
graph operators to shield the computation model from the detailed tensor operators so that
TENSORIZE and COMPUTE can be easily implemented.
• We propose scaling strategies to deal with large graphs, which include: a tensor-based
compression and computation strategy, and an out-of-XPU-memory computation strategy
including balanced partitioning and pipelined scheduling.
• We implement TGraph, the first tensor-based graph processing framework that can be
smoothly deployed and run on different DL frameworks and hardware. It allows users to
easily implement graph algorithms without delving into the underlying parallelization.
• We validate the outperformance of TGraph by extensive comparison studies with seven
state-of-the-art shared-memory and GPU-based graph systems. Moreover, we validate the
extensibility of TGraph by deploying and running it on two ML frameworks (PyTorch and
TensorFlow) and three hardware accelerators (Nvidia GPU, AMD GPU, and MAC MPS).

Road map. Section 2 introduces the preliminaries. Section 3 gives the system overview of TGraph.
Section 4 introduces the tensor-centric computation model. Section 5 presents the scaling strategies.
Experimental studies are reported in Section 6. Section 7 reviews the related work, and Section 8
concludes the paper.
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Table 1. Basic tensor operators

Category & Functionality Representative Operators

Initialization: create a tensor based given data. zeros, ones, empty, fill, arange,
repeat_interleave, etc.

Indexing: choose specific elements from a tensor. index_select, mask_select,etc.
Comparison: compare a tensor with another tensor. eq, lt, gt, le, ge, searchsorted, etc.
Arithmetic: perform arithmetic operations on tensors. add, mul, div, sub, etc.
Reorganization: rearrange elements from tensors. sort, cat, stack, roll, etc.

Aggregation: aggregate over a tensor or groups. max, min, mean, sum, cumsum, unique,
scatter_reduce, segment_csr, etc.

2 Preliminary

Graph Definitions and Representations. A simple undirected graph is denoted by 𝐺 = (𝑉 , 𝐸),
where 𝑉 is the vertex set and 𝐸 ⊆ 𝑉 × 𝑉 is the edge set. We use 𝑉 (𝐺), 𝐸 (𝐺), 𝑛 = |𝑉 (𝐺) |, and
𝑚 = |𝐸 (𝐺) | to denote the vertex set, edge set, vertex number, and edge number in𝐺 , respectively. The
neighbors and degree of a vertex 𝑣 in graph 𝐺 are defined as 𝑁 (𝑣,𝐺) = {𝑢 ∈ 𝑉 (𝐺) | (𝑢, 𝑣) ∈ 𝐸 (𝐺)}
and𝑑𝑒𝑔(𝑣,𝐺) = |𝑁 (𝑣,𝐺) |. These definitions can also be extended to direct graphs.When the context
is clear, we omit𝐺 in above notations for simplification. One of the basic graph representations is
the adjacency matrix with the space cost of 𝑂 (𝑛 × 𝑛). Since real-world graphs are usually sparse,
Coordinate List (COO) or Compressed Sparse Row (CSR) are used to reduce space overhead. COO
represents a graph by two arrays, 𝑠𝑟𝑐 and 𝑑𝑒𝑠𝑡 of size𝑚, indicating the source and destination
vertices of edges. CSR offers a more compact space utilization, where the array 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 of size𝑚
stores the neighbors of each vertex in 𝑉 and the array 𝑜 𝑓 𝑓 𝑠𝑒𝑡 of size 𝑛 + 1 stores the starting and
ending positions of neighbors. Specifically, 𝑜 𝑓 𝑓 𝑠𝑒𝑡 [𝑖] and 𝑜 𝑓 𝑓 𝑠𝑒𝑡 [𝑖 + 1] indicate the starting and
ending positions of neighbors for vertex 𝑣𝑖 in 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 .
Graph Computation Model. The graph computation model defines the computational units and
programming interfaces to help users program with the system and distribute the program for
parallel computation. The vertex-centric model is widely adopted by many frameworks, such as
Pregel [43], Giraph [21], Powergraph [22], Cusha [37], etc. It provides a vertex-specific programming
interface by hiding the partition and coordination details so that users can easily write the program
from the perspective of a vertex. The edge-centric model was proposed to deal with power-law graphs
where the computational unit is an edge instead of a vertex, e.g., X-Stream [53] and Chaos [53]. The
computation in each iteration can be divided into two or three phases, such as push-pull [13], scatter-
gather [53], advance-compute [12], gather-apply-scatter [22] [52], etc. The component/subgraph-
centric model manipulates components/subgraphs consisting of a collection of vertices/edges to
achieve coarse-grained parallelism. It was initially introduced by Giraph++ [62], and then adopted
by other systems such as Grape [17], Minigraph [77], etc.
Tensor and its Operators. A tensor is a multi-dimensional array, where a scalar is a 0-dimension
array, a vector is a 1-dimensional array and a matrix is a 2-dimensional array. To accelerate tensor
computation, hardware makers and cloud vendors (Intel, AMD, Apple, etc.) have made great efforts
to develop specialized hardware and primitives to speed up tensor computation, such as GPU, TPU,
NPU, etc. Atop hardware and their primitives, a set of DL frameworks (PyTorch [49], TensorFlow
[1], MXNet [9], etc.) along with their compilers and runtimes (TVM [10], ONNX runtime [45], etc. )
are developed and collectively referred to as TCRs. TCRs offer a rich set of operators to compute and
manipulate tensors, which significantly simplify the process of exploiting the parallel capabilities
offered by the specialized hardware. Table 1 lists the common tensor operators provided by different
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Fig. 1. Overview of system architecture

TCRs, and the specific meaning of each tensor operator will be introduced later at usage. Here, we
use PyTorch as an example, and the operators in other TCRs such as TensorFlow and MXNet are
basically the same.

3 System Overview
The overview of TGraph is shown in Fig. 1. We build TGraph atop TCRs with three layers. At the
core of the system, the computation layer provides the tensor-centric computation module with
abstracted interfaces and the out-of-XPU-memory computation module for large-scale graphs.
On one side, the computation layer can support the implementation of graph algorithms in the
upper applications layer ; on the other side, it is highly compatible with the graph representations in
the lower storage layer. To further save storage space and accelerate the computation, we provide
a tensor-based compression module in the storage layer. Next, we will give a brief overview of
the tensor-centric computation model and scaling strategies, including graph compression and
out-of-XPU-memory computation, leaving more details to Sections 4 and 5.
Tensor-centric Computation Model. We propose a tensor-centric computation model which
depicts graph algorithms as an iterative process and organizes active vertices and their adjacent
edges in each iteration as tensors. Although these active vertices/edges can also be considered as
subgraphs, TGraph differs from existing subgraph-centric systems that use specialized data struc-
tures and operations tailored for specific hardware (e.g. Giraph++ and Grape on CPUs, MiniGraph
on GPUs). Such specialization makes it hard to migrate them to other hardware platforms. TGraph
is built on TCRs, which utilize tensor as the data structure and thus can be supported by diverse
hardware. However, organizing active vertices/edges as tensors and efficiently manipulating them
is challenging as we need to maximally leverage the parallelism of tensor operators and reduce the
kernel launch overhead of tensor operators to achieve high performance. Thus, we provide two
programming interfaces: TENSORIZE to organize active vertices/edges as large one-dimensional
tensors, and COMPUTE to perform the computation by tensor operators. We also provide a set of
highly optimized graph operators, including vertexSelect, neighborSelect, reconstruct, aggregate,
and update to help users easily implement the highly efficient interfaces while shielding graph
algorithms from tedious tensor operators. Such an abstraction can enable the easy migration of
TGraph across different TCRs.
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Fig. 2. An example of running BFS on graph 𝐺 through TENSORIZE and COMPUTE.

Algorithm 1: The conceptual computation process of TGraph
Input :A graph 𝑇𝐺 = (𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠, 𝑜 𝑓 𝑓 𝑠𝑒𝑡, 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠)
Output :A computation result tensor 𝑣𝐷𝑎𝑡𝑎

1 𝑣𝐷𝑎𝑡𝑎, 𝑎𝑐𝑡𝑀𝑎𝑠𝑘 ← INIT(𝑇𝐺);
2 while any (𝑎𝑐𝑡𝑀𝑎𝑠𝑘) ≠ 𝐹𝑎𝑙𝑠𝑒 do
3 𝑇𝑆𝑢𝑏𝑔𝑟𝑎𝑝ℎ← TENSORIZE(𝑇𝐺, 𝑎𝑐𝑡𝑀𝑎𝑠𝑘);
4 𝑣𝐷𝑎𝑡𝑎, 𝑎𝑐𝑡𝑀𝑎𝑠𝑘 ← COMPUTE(𝑇𝑆𝑢𝑏𝑔𝑟𝑎𝑝ℎ, 𝑣𝐷𝑎𝑡𝑎, 𝑎𝑐𝑡𝑀𝑎𝑠𝑘);
5 return 𝑣𝐷𝑎𝑡𝑎;

Scaling Strategies. The memory of the hardware accelerators (i.e., XPUs) is quite limited compared
to the host memory, which may hinder the application of TGraph on large-scale graphs. A possible
solution is to compress the large graph and compute the compressed data. How to achieve this
based on tensors is nontrivial. We provide a tensor-based compression strategy which can save a
significant amount of storage space and meanwhile speed up the computation. For a large-scale
graph that still cannot fit into the XPU memory, we provide the out-of-XPU-memory computation
strategy, where the XPU memory is used to accelerate the tensor operators and the host memory is
used to store graphs. We propose the tensor-based partition strategies to divide the input graph
into balanced subgraphs. Then, these subgraphs are scheduled into the XPU in a pipeline manner
until the entire computation converges.

4 Tensor-centric Computation Model
In this section, we will first introduce the tensor-centric programming model and the abstracted
graph operators, and then show how to implement graph algorithms based on them and how
to map graph operators to tensor operators. Finally, we will discuss the potential optimizations
brought by the tensor-centric model.

4.1 Tensor-centric Programming Abstraction
TGraph abstracts graph applications as an iterative process, where each iteration involves a se-
ries of steps. Specifically, TGraph divides each iteration into two main steps: (1) TENSORIZE to
organize the subgraph consisting of active vertices and edges into tensors. We need to efficiently
organize active vertices/edges into large one-dimensional tensors instead of multiple small tensors
to maximize the parallelism of hardware backend and reduce the kernel launch overhead for each
tensor operator in the following COMPUTE step. (2) COMPUTE to perform computation on the
tensorized subgraph. For each vertex within the subgraph, we need to aggregate the data received
from the neighboring vertices, update its value, and identify the active vertices in the next iteration.
The conceptual computation process of TGraph is shown in Alg. 1. The input is a tensor repre-

sentation of graph𝐺 . TGraph can support existing graph representations such as CSR and COO.
Here, we adopt CSR, which is compact and can preserve the locality of neighbors. COO can also
be integrated into our system in a similar way, if needed. Thus, the tensor representation of 𝐺
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Table 2. Graph operators in TGraph v.s. graph primitives in linear-algebra-based graph systems

Systems Creation Transpose BFS Extract Insert Union/Intersect Reduce Apply
Combinatorial BLAS [8] - - SpGEMM, SpMV SpRef SpAsgn SpEWiseX Reduce Apply

Graph BLAS [34] build transpose MxM, MxV, VXM, extract assign eWiseAdd, eWiseMult reduce apply

GraphBLAST [70] - transpose mxm, mxv, vxm extract assign eWiseAdd, eWiseMult reduce apply

TGraph - - ✓
vertexSelect

neighborSelect, reconstruct - - aggregate update

is 𝑇𝐺 = (𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠, 𝑜 𝑓 𝑓 𝑠𝑒𝑡, 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠), where 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 and 𝑜 𝑓 𝑓 𝑠𝑒𝑡 are 1-dimensional tensors to
represent the neighbors and the index position of vertices in CSR. To efficiently locate the vertices,
we reassign the vertex IDs by a continuous integer sequence starting from 0 to 𝑛 − 1 and use an
additional tensor 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 of size 𝑛 to store all the vertex IDs. We use a bool tensor 𝑎𝑐𝑡𝑀𝑎𝑠𝑘 of size
𝑛 to indicate which vertices are active in the current iteration where 𝑇𝑟𝑢𝑒 represents the status of
active and use a one-dimensional tensor 𝑣𝐷𝑎𝑡𝑎 of size 𝑛 to keep the current value of all the vertices.
These two tensors can be initialized by a user-defined function INIT for different applications (line
1). Then we extract the subgraph consisting of the active vertices and their neighbors and organize
them as tensors through TENSORIZE (line 3). Then we use COMPUTE to conduct computation on
the tensorized subgraph 𝑇𝑆𝑢𝑏𝑔𝑟𝑎𝑝ℎ (line 4), including aggregating information from neighbors,
updating the value for each vertex in 𝑣𝐷𝑎𝑡𝑎, and updating the masks for active vertices stored in
𝑎𝑐𝑡𝑀𝑎𝑠𝑘 . The iteration terminates when there are no active vertices, i.e., any(𝑎𝑐𝑡𝑀𝑎𝑠𝑘) = 𝐹𝑎𝑙𝑠𝑒 .

Through the abstracted interfaces TENSORIZE and COMPUTE, we can develop a wide range of
algorithms that can be executed in an iterative way such as BFS, WCC, SSSP, PageRank, etc. Fig. 2
takes BFS as an example to show how the algorithm runs through these two steps. Suppose that
𝑣2 is the source vertex, and we are at the second iteration where {𝑣4, 𝑣5, 𝑣6} are currently active.
In TENSORIZE, we extract the subgraph from the tensor-based graph 𝑇𝐺 based on {𝑣4, 𝑣5, 𝑣6} and
their neighbors and reorganize them as tensors. In COMPUTE, we send current data {1, 1, 1} in
{𝑣4, 𝑣5, 𝑣6} to their neighbors, respectively, and increase the value by 1. Thus, {𝑣0, . . . , 𝑣4, 𝑣5, 𝑣6}
obtain the aggregated data, but only {𝑣0, 𝑣1, 𝑣3} with smaller value than 𝑣𝐷𝑎𝑡𝑎 will be updated and
activated.

4.2 Graph Operator Abstraction and Analysis
Our high-level tensor-centric abstraction with two interfaces provides flexibility to users to manip-
ulate the tensorized subgraphs for different graph algorithms. However, it also requires users to be
quite familiar with the detailed tensor operators to implement TENSORIZE and COMPUTE effi-
ciently. Thus, to bridge this gap, we abstract a set of graph operators: vertexSelect, neighborSelect,
reconstruct, etc., which hide the detailed tensor operators from users and enable easy migration
across different TCRs. Here, we briefly introduce the function and parameters of each graph opera-
tor, leaving the implementation details to Section 4.4. Without loss of generality, all the parameters
are 1-dimensional tensors.

• vertexSelect. The function of this operator is to select a subset from a vertex set. It takes a
vertex set 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 and a selection indicator 𝑎𝑐𝑡𝑀𝑎𝑠𝑘 as input and outputs a smaller tensor
𝑎𝑐𝑡𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 to represent the selected vertices. Usually, vertexSelect is used in TENSORIZE to
select active vertices.
• neighborSelect. The neighborSelect operator is designed to efficiently select the neighbors for
some specific vertices. It takes a tensorized graph𝑇𝐺 = (𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠, 𝑜 𝑓 𝑓 𝑠𝑒𝑡, 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠) and the
active vertices 𝑎𝑐𝑡𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 as input, and outputs a tensor 𝑎𝑐𝑡𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 to represent neighbors
of 𝑎𝑐𝑡𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 . neighborSelect is usually invoked in TENSORIZE to select the incoming or
outgoing neighbors of the active vertices.
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Algorithm 2: TENSORIZE
Input :A tensorized graph 𝑇𝐺 = (𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠, 𝑜 𝑓 𝑓 𝑠𝑒𝑡, 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠), and the vertex mask 𝑎𝑐𝑡𝑀𝑎𝑠𝑘

Output :An extracted tensorized subgraph 𝑇𝑆𝑢𝑏𝑔𝑟𝑎𝑝ℎ
1 𝑎𝑐𝑡𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 ← vertexSelect(𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠, 𝑎𝑐𝑡𝑀𝑎𝑠𝑘);
2 𝑎𝑐𝑡𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 ← neighborSelect(𝑇𝐺, 𝑎𝑐𝑡𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠);
3 𝑇𝑆𝑢𝑏𝑔𝑟𝑎𝑝ℎ← reconstruct(𝑇𝐺, 𝑎𝑐𝑡𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠, 𝑎𝑐𝑡𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠);
4 return 𝑇𝑆𝑢𝑏𝑔𝑟𝑎𝑝ℎ;

• reconstruct. Given a vertex subset and its neighbors, we use reconstruct to organize them
into a tensorized subgraph for the next COMPUTE step. It takes a tensorized graph 𝑇𝐺 =

(𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠, 𝑜 𝑓 𝑓 𝑠𝑒𝑡, 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠), the selected vertices𝑎𝑐𝑡𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 and their neighbors𝑎𝑐𝑡𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠
as input, and outputs the tensor representation of the subgraph, 𝑇𝑆𝑢𝑏𝑔𝑟𝑎𝑝ℎ.
• aggregate. The aggregate operator is used to aggregate the data received from the neighboring
vertices for each vertex within the subgraph in the COMPUTE phase. It takes a tensorized
subgraph 𝑇𝑆𝑢𝑏𝑔𝑟𝑎𝑝ℎ obtained by reconstruct and a tensor 𝑎𝑔𝑔𝐷𝑎𝑡𝑎 that represents the data
of each vertex as input, and outputs the aggregate results 𝑎𝑔𝑔𝑅𝑒𝑠 .
• update. The update operator is used to update the status of each vertex based on the aggre-
gated data in a user-specific way in the COMPUTE phase. It takes the current active mask
𝑎𝑐𝑡𝑀𝑎𝑠𝑘 , current vertex data 𝑣𝐷𝑎𝑡𝑎, and an update function with aggregated result 𝑎𝑔𝑔𝑅𝑒𝑠
as input, and updates the values of 𝑣𝐷𝑎𝑡𝑎 and 𝑎𝑐𝑡𝑀𝑎𝑠𝑘 .

Expressiveness Analysis of Graph Operators. These graph operators can maximize the paral-
lelism of tensor computation and ease the implementation of graph algorithms for users. However,
implementing graph algorithms based on these five graph operators also brings constraints to
algorithm designing. A natural question arising is whether these graph operators are expressive
enough to represent a wide range of graph algorithms? Specifically, expressiveness refers to how
many graph algorithms can be supported by these graph operators. In other words, we need to
consider what kinds of graph operators are required to support a wide range of graph algorithms.
Graph systems based on linear algebra, such as CombBLAS [8], GraphBLAS [44] [35] [34], and
GraphBLAST [70] propose a set of graph operators/primitives. As shown in Table 2, their primitives
are slightly different due to differences in the implementations, but generally fall into the following
categories: Create to build a graph from a set of vertices and edges, Transpose to change the direc-
tion of edges, BFS to conduct single-source, multi-source or weighted breadth-first search, Extract
to extract a subgraph from a graph, Insert to insert a subgraph to a large graph, Union/Intersect
to union or intersect two graphs, Reduce to aggregate vertex neighboring information, Apply to
update edge/vertex values. These graph primitives have been shown to be able to support a wide
range of graph algorithms [36]. Our operators can well align with these primitives except Creation,
Transpose, Insert, Union/Intersect, which are not currently involved in the single-graph analytical
algorithms studied in this paper but can be easily implemented with tensor operators if they are
involved in other graph algorithms in the future. Besides, the BFS is not considered as a graph
operator in TGraph, as it can be naturally supported by our graph operators through TENSORIZE
and COMPUTE functions. The above analysis shows that our graph operators are sufficient to
support a large range of graph algorithms. Equipped with graph operators, together with the highly
abstracted interfaces TENSORIZE and COMPUTE, with the assistance of basic tensor operators,
users can easily implement a wide range of graph algorithms without knowing tedious details of
the complex tensor operators.
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Algorithm 3: Implementation of BFS, WCC, PageRank
// Implementation of BFS

1 Function INIT(TG = (vertices, offset, neighbors))
2 𝑣𝐷𝑎𝑡𝑎 ← ones(|𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 |);
3 𝑣𝐷𝑎𝑡𝑎 ← mul(𝑣𝐷𝑎𝑡𝑎, 𝐼𝑁𝐹 );
4 𝑣𝐷𝑎𝑡𝑎[𝑠𝑜𝑢𝑟𝑐𝑒] ← 0;
5 𝑎𝑐𝑡𝑀𝑎𝑠𝑘 ← full(|𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 |, 𝐹𝑎𝑙𝑠𝑒);
6 𝑎𝑐𝑡𝑀𝑎𝑠𝑘 [𝑠𝑜𝑢𝑟𝑐𝑒] ← 𝑇𝑟𝑢𝑒 ;
7 return 𝑣𝐷𝑎𝑡𝑎, 𝑎𝑐𝑡𝑀𝑎𝑠𝑘 ;

8 Function updfunc(G, vData, actMask)
9 𝑎𝑐𝑡𝑀𝑎𝑠𝑘 ← lt(𝑎𝑔𝑔𝑅𝑒𝑠, 𝑣𝐷𝑎𝑡𝑎);

10 𝑣𝐷𝑎𝑡𝑎 ← min(𝑣𝐷𝑎𝑡𝑎, 𝑎𝑔𝑔𝑅𝑒𝑠);

11 Function COMPUTE(TSubgraph, vData, actMask)
12 𝑎𝑔𝑔𝐷𝑎𝑡𝑎 ← add(𝑣𝐷𝑎𝑡𝑎, 1);
13 𝑎𝑔𝑔𝑅𝑒𝑠 ← aggregate(𝑇𝑆𝑢𝑏𝑔𝑟𝑎𝑝ℎ, 𝑎𝑔𝑔𝐷𝑎𝑡𝑎, ’min’);
14 update(𝑣𝐷𝑎𝑡𝑎, 𝑎𝑐𝑡𝑀𝑎𝑠𝑘, 𝑎𝑔𝑔𝑅𝑒𝑠 , updfunc);

// Implementation of WCC

15 Function INIT(TG = (vertices, offset, neighbors))
16 𝑣𝐷𝑎𝑡𝑎 ← arange(|𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 |);
17 𝑎𝑐𝑡𝑀𝑎𝑠𝑘 ← full(|𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 |, 𝑇𝑟𝑢𝑒);
18 return 𝑣𝐷𝑎𝑡𝑎, 𝑎𝑐𝑡𝑀𝑎𝑠𝑘 ;

19 Function updfunc(aggRes, vData, actMask)
20 𝑎𝑐𝑡𝑀𝑎𝑠𝑘 ← lt(𝑎𝑔𝑔𝑅𝑒𝑠, 𝑣𝐷𝑎𝑡𝑎);
21 𝑣𝐷𝑎𝑡𝑎 ← min(𝑣𝐷𝑎𝑡𝑎, 𝑎𝑔𝑔𝑅𝑒𝑠);

22 Function COMPUTE(TSubgraph, vData, actMask)
23 𝑎𝑔𝑔𝐷𝑎𝑡𝑎 ← 𝑣𝐷𝑎𝑡𝑎;
24 𝑎𝑔𝑔𝑅𝑒𝑠 ← aggregate(𝑇𝑆𝑢𝑏𝑔𝑟𝑎𝑝ℎ, 𝑎𝑔𝑔𝐷𝑎𝑡𝑎, ’min’);
25 update(𝑣𝐷𝑎𝑡𝑎, 𝑎𝑐𝑡𝑀𝑎𝑠𝑘, 𝑎𝑔𝑔𝑅𝑒𝑠 , updfunc);

// Implementation of PageRank

26 Function INIT(TG = (vertices, offset, neighbors))
27 𝑣𝐷𝑎𝑡𝑎 ← ones(|𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 |) /|𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 |;
28 𝑎𝑐𝑡𝑀𝑎𝑠𝑘 ← full(|𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 |, 𝑇𝑟𝑢𝑒);
29 return 𝑣𝐷𝑎𝑡𝑎, 𝑎𝑐𝑡𝑀𝑎𝑠𝑘 ;

30 Function updfunc(aggRes, vData, actMask)
31 𝑣𝐷𝑎𝑡𝑎 ← mul(𝑎𝑔𝑔𝑅𝑒𝑠, 𝛼);
32 𝑣𝐷𝑎𝑡𝑎 ← add(𝑣𝐷𝑎𝑡𝑎, 1 − 𝛼);
33 Function COMPUTE(TSubgraph, vData, actMask)
34 𝑎𝑔𝑔𝐷𝑎𝑡𝑎 ← div(𝑣𝐷𝑎𝑡𝑎,𝐺.𝑑𝑒𝑔𝑟𝑒𝑒𝑠);
35 𝑎𝑔𝑔𝑅𝑒𝑠 ← aggregate(𝑇𝑆𝑢𝑏𝑔𝑟𝑎𝑝ℎ, 𝑎𝑔𝑔𝐷𝑎𝑡𝑎, ’sum’);
36 update(𝑣𝐷𝑎𝑡𝑎, 𝑎𝑐𝑡𝑀𝑎𝑠𝑘, 𝑎𝑔𝑔𝑅𝑒𝑠 , updfunc);

4.3 Implementation of Graph Algorithms
Before getting into the implementation of any specific graph algorithms, we first show how to
extract the subgraph constituted by activated vertices along with their neighbors and organize them
into tensors in the TENSORIZE function, which is independent of any specific graph algorithms
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studied in this paper. As shown in Alg. 2, TENSORIZE first selects the active vertices through the
vertexSelect operator (line 1), then uses neighborSelect to fetch the neighbors of active vertices (line
2), and finally extracts and represents the subgraph consisting of actvertices, actoffset, actneighbors
via reconstruct operator (line 3). The implementation of graph algorithms mainly differs in the
COMPUTE function, which involves data aggregation and updates. Specifically, updfunc is a user-
defined function used in graph operator update to specify how to update 𝑣𝐷𝑎𝑡𝑎 and 𝑎𝑐𝑡𝑀𝑎𝑠𝑘 based
on the aggregated result. Due to space limitation, we show three representative algorithms (BFS,
WCC, and PageRank) in Alg. 3.

In BFS, all vertices except for the source are initialized to 𝐼𝑁 𝐹 , and only the source vertex is
active(lines 2-6). During the computation, each vertex adds 1 to its current value, sends the value to
its neighbors, and then performs the min aggregation (lines 12-13). The updfunc function update
the value of each vertex and mark it as active if the aggregated value is less than its current value
(lines 9-10).

In WCC, each vertex is assigned a unique value to represent the connected component it belongs
to, and every vertex is initialized to be active (lines 16-17). During the computation, the minimum
aggregation function is executed to aggregate the data. Function updfunc updates the value of each
vertex and mark it as activated if the aggregated value is less than its current value (lines 20-21).

In PageRank, the value of each vertex is initialized to 1/|𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 |, and all vertices are set to
be active (lines 27-28). During the computation, every vertex equally distributes its value to its
neighbors and performs the sum aggregation (lines 34-35). In the updfunc function, we compute
the new value for a vertex based on the data aggregated from neighbors (lines 31-32).

4.4 Implementation of Graph Operators
Despite the simple function of these graph operators, efficiently implementing them based on
tensors is not always straightforward, especially for neighborSelect and aggregate. The underlying
reason is that we need to well organize the data and carefully choose the tensor operators to avoid
high computational costs and maximally leverage the parallelism of the tensors. That’s why these
functionally simple operators can be easily implemented sequentially on the CPU but need careful
design on TCRs. In the following, we will introduce how to implement these graph operators using
tensor operators and briefly analyze their computation cost.
Vertex Selection. vertexSelect is used to choose a subset of vertices from a given vertex set. Given
vertices of size 𝑛 and a selection indicator, we can directly select the vertices from vertices by the
tensor operator mask_select. Thus, the step complexity of vertexSelect is𝑂 (log(𝑛)) and the work
complexity is 𝑂 (𝑛).
Neighbor Selection. Given a tensorized graph 𝑇𝐺 = (𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 , 𝑜 𝑓 𝑓 𝑠𝑒𝑡 , 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠) and a selected
vertex set 𝑉𝑠 , neighborSelect aims to obtain and organize the neighbors of 𝑉𝑠 into a tensor. A naive
solution is to retrieve the neighbors 𝑁 (𝑣𝑖 ) from 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 for each vertex 𝑣𝑖 in𝑉𝑠 and then combine
them by the concatenate tensor operator cat. However, sequentially processing vertices in 𝑉𝑠 will
severely undermine the parallelism of TCR computation, leading to poor performance. Hence,
we propose a new way to implement neighborSelect, as shown in Algorithm 4. First, we obtain
start_Index and end_Index of size |𝑉𝑠 | to record the starting and ending indices of neighbors for
all vertices in 𝑉𝑠 and obtain the number of neighbors for each vertex in 𝑉𝑠 , denoted by tensor
sizes (lines 1-3). Then we compute the index of neighbors for 𝑉𝑠 from tensor neighbors in lines
5-9. First, we create a tensor temp with values from 0 to sum(𝑠𝑖𝑧𝑒𝑠) by arange, which generates a
one-dimensional tensor with equally spaced values within a specific range. Obviously, temp will be
the index to be retrieved from neighbors when 𝑉𝑠 is a continuous integer sequence starting from 0
to |𝑉𝑠 | − 1. However, the elements in 𝑉𝑠 are usually discrete. Thus, there is an offset between the
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Algorithm 4: Graph Operator neighborSelect
Input :A tensorized graph 𝑇𝐺 = (𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠, 𝑜 𝑓 𝑓 𝑠𝑒𝑡, 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠), and a vertex subset 𝑉𝑠
Output :The neighbors 𝑁𝑠 of 𝑉𝑠
// Calculate the number of neighboring vertices

1 𝑠𝑡𝑎𝑟𝑡_𝑖𝑛𝑑𝑒𝑥 ← index_select(offset, 𝑉𝑠 );
2 𝑒𝑛𝑑_𝑖𝑛𝑑𝑒𝑥 ← index_select(offset, 𝑉𝑠 + 1);
3 𝑠𝑖𝑧𝑒𝑠 ← 𝑒𝑛𝑑_𝑖𝑛𝑑𝑒𝑥 − 𝑠𝑡𝑎𝑟𝑡_𝑖𝑛𝑑𝑒𝑥 ;
// Calculate the index of neighboring vertices

4 𝑡𝑒𝑚𝑝 ← arange ( sum (𝑠𝑖𝑧𝑒𝑠));
5 𝑖𝑛𝑖𝑡𝑖𝑎𝑙_𝑖𝑛𝑑𝑒𝑥 ← roll ( cumsum (𝑠𝑖𝑧𝑒𝑠 , dim=0), 1);
6 𝑖𝑛𝑖𝑡𝑖𝑎𝑙_𝑖𝑛𝑑𝑒𝑥 [0] ← 0;
7 𝑣𝑒𝑟𝑡𝑒𝑥_𝑜 𝑓 𝑓 𝑠𝑒𝑡 ← repeat_interleave (𝑠𝑡𝑎𝑟𝑡_𝑖𝑛𝑑𝑒𝑥− 𝑖𝑛𝑖𝑡𝑖𝑎𝑙_𝑖𝑛𝑑𝑒𝑥 , 𝑠𝑖𝑧𝑒𝑠);
8 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠_𝑖𝑛𝑑𝑒𝑥 ← 𝑡𝑒𝑚𝑝 + 𝑣𝑒𝑟𝑡𝑒𝑥_𝑜 𝑓 𝑓 𝑠𝑒𝑡 ;
// Select neighbors

9 𝑁𝑠 ← index_select (neighbors, 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠_𝑖𝑛𝑑𝑒𝑥 );
10 return 𝑁𝑠 ;

actual index of a neighbor in neighbors and temp. Since neighbors of the same vertex have the
same offset (called neighbor offset), we only need to compute the offset of the starting neighbor
for each vertex and then expand it to the subsequent neighbors of this vertex. Here, we use the
tensor initial_index of size |𝑉𝑠 | to represent the index of the starting neighbor of each vertex in 𝑉𝑠
when 𝑉𝑠 is a continuous sequence starting from 0. The index of each starting neighbor is the sum
of the degrees of all preceding vertices for the corresponding vertex. When cumsum is applied to
sizes, it yields the sum of degrees of preceding vertices, including the vertex itself. Therefore, we
need to shift the tensor obtained by cumsum to the right by one space, which can be achieved using
the tensor roll, followed by adding 0 at the index 0 to obtain initial_index(lines 5-6). Since we
have already computed the actual index start_index for starting neighbors, the neighbor offset for
each vertex in𝑉𝑠 can be computed as start_index - initial_index with length |𝑉𝑠 |, which can then be
expanded into vertex_offset with length sum(𝑠𝑖𝑧𝑒𝑠) by tensor operator repeat_interleave (line
7). Thus, we can obtain the actual index for neighboring vertices of 𝑉𝑠 , neighbors_index, by adding
vertex_offset to temp. Finally, we perform index_select on neighbors to get 𝑁𝑠 (line 9).
The operator repeat_interleave dominates the complexity of neighborSelect. In Alg. 4, the

tensor operator repeat_interleave duplicates the elements within 𝑠𝑖𝑧𝑒 whose length is |𝑉𝑠 |, and
generates 𝑣𝑒𝑟𝑡𝑒𝑥_𝑜 𝑓 𝑓 𝑠𝑒𝑡 with length |𝑁𝑠 |. Thus, the step complexity and work complexity of
neighborSelect are 𝑂 (log( |𝑉𝑠 |)) and 𝑂 ( |𝑉𝑠 | + |𝑁𝑠 |), respectively.
Reconstruction. The reconstruct operator aims to reorganize a set of vertices 𝑉𝑠 and their neigh-
bors 𝑁𝑠 into a tensor representation 𝑇𝑆 of the subgraph 𝐺𝑠 constituted by 𝑉𝑠 and 𝑁𝑠 for the next
COMPUTE step. Since neighbors tensor 𝑁𝑠 of size𝑚′ has been obtained, we only need to compute
the new offset 𝑜 𝑓 𝑓 𝑠𝑒𝑡𝑠 for 𝐺𝑠 . For a vertex 𝑣𝑖 , the starting index of its neighboring vertices in
𝑁𝑠 corresponds to the cumulative sum of the degrees of the preceding 𝑖-1 vertices. Similarly, the
ending index of its neighboring vertices is the sum of the degrees of the preceding 𝑖 (including
itself) vertices. Hence, we use the tensor operator cumsum to accumulate the degree tensor, which
records the degree of each vertex in the subgraph, and then use cat to prepend a zero element to
the accumulated tensor as the starting neighbor index of the first vertex. The step complexity of
reconstruct is 𝑂 (log( |𝑉𝑠 |)) and the work complexity of reconstruct is 𝑂 ( |𝑉𝑠 |).
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Fig. 3. Pull and Push aggregate operators

Aggregate. The aggregate graph operator is invoked when we need to aggregate the neighboring
data of the same vertex. aggregate only focuses on the subgraph obtained in the TENSORIZE step
and can be implemented in either push or pull mode. In push mode, each vertex pushes its data to
the outgoing neighbors. In pull mode, each vertex pulls the data from its incoming neighbors.

The implementation of aggregate for these two modes is shown in Alg. 5. We use a 1-dimensional
tensor 𝑔𝑟𝑜𝑢𝑝𝐷𝑎𝑡𝑎 to store the data to be aggregated and use 𝑔𝑟𝑜𝑢𝑝𝐼𝐷 of the same length to indicate
which group each data in 𝑔𝑟𝑜𝑢𝑝𝐷𝑎𝑡𝑎 belongs to. In push mode, the 𝑔𝑟𝑜𝑢𝑝𝐼𝐷 is just the 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠
as every vertex in 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 sends the data to its neighbors (line 2). The 𝑔𝑟𝑜𝑢𝑝𝐷𝑎𝑡𝑎 can be obtained
by expanding the data sent from 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 using the repeat_interleave operator (lines 3-4). The
repeat number of every data depends on the out-degree of its vertex. After obtaining 𝑔𝑟𝑜𝑢𝑝𝐼𝐷

and 𝑔𝑟𝑜𝑢𝑝𝐷𝑎𝑡𝑎, we use scatter_reduce to aggregate the values in 𝑔𝑟𝑜𝑢𝑝𝐷𝑎𝑡𝑎 within the same
group(line 5). In pull mode, the 𝑔𝑟𝑜𝑢𝑝𝐷𝑎𝑡𝑎 is the data of neighbors, which can be selected from
the data array 𝑎𝑔𝑔𝐷𝑎𝑡𝑎 by index_select (line 7). The 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 can be expanded to 𝑔𝑟𝑜𝑢𝑝𝐼𝐷 in a
similar way adopted in push mode. However, since the data within the same group is consecutively
stored in 𝑔𝑟𝑜𝑢𝑝𝐷𝑎𝑡𝑎, we can compress 𝑔𝑟𝑜𝑢𝑝𝐼𝐷 into the compressed format 𝑐𝑔𝑟𝑜𝑢𝑝𝐼𝐷 , which only
records the starting and ending index in 𝑔𝑟𝑜𝑢𝑝𝐷𝑎𝑡𝑎 for each group. The 𝑐𝑔𝑟𝑜𝑢𝑝𝐼𝐷 is just the 𝑜 𝑓 𝑓 𝑠𝑒𝑡
of the extracted graph (line 8). Thus, we use segment_csr instead of scatter_reduce for data
aggregation as segment_csr can aggregate a continuous segment of elements more efficiently (line
9). The size of aggregation results 𝑎𝑔𝑔𝑅𝑒𝑠 is determined by the maximum group ID in push mode
and the numbers of groups in pull mode. We expand it to a tensor of size 𝑛 for the unified update
(line 10). In push mode, the step complexity of aggregate is 𝑂 (log( |𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 |) + log( |𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 |)
and the work complexity is 𝑂 ( |𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 | + |𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 |). In pull mode, we use 𝑑𝑚𝑎𝑥 to represent the
maximum degrees of subgraph vertices. The step complexity of aggregate is𝑂 (log(𝑑𝑚𝑎𝑥 )), and the
work complexity is 𝑂 ( |𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 |).

Fig. 3 illustrates how to get 𝑔𝑟𝑜𝑢𝑝𝐷𝑎𝑡𝑎 and 𝑔𝑟𝑜𝑢𝑝𝐼𝐷 in two modes. For pull mode, the 𝑔𝑟𝑜𝑢𝑝𝐷𝑎𝑡𝑎
is [12, 17, 11, 16, 15], which is the aggregated data of 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 . The vertices [0, 4] can be expanded
to [0, 0, 0, 4, 4] as the 𝑔𝑟𝑜𝑢𝑝𝐼𝐷 . The 𝑔𝑟𝑜𝑢𝑝𝐼𝐷 can be compressed into 𝑐𝑔𝑟𝑜𝑢𝑝𝐼𝐷 , which is just the
𝑜 𝑓 𝑓 𝑠𝑒𝑡 . For pushmode, the𝑔𝑟𝑜𝑢𝑝𝐼𝐷 is just the𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 , i.e. [4, 5, 6, 1]. The aggregated data [15, 14]
can be expanded to [15, 15, 15, 14] as the 𝑔𝑟𝑜𝑢𝑝𝐷𝑎𝑡𝑎 since vertex 2 has three neighbors and vertex
3 has one neighbor.
Update. update is used to update the data of every vertex in the subgraph based on the tensor
𝑎𝑔𝑔𝑅𝑒𝑠 . It allows users to define an update function updfunc where a series of arithmetic operators
or comparison operators will be executed on 𝑎𝑔𝑔𝑅𝑒𝑠 to generate 𝑢𝑝𝑑𝑎𝑡𝑒𝑅𝑒𝑠 with the same size as
𝑎𝑔𝑔𝑅𝑒𝑠 for updating. The step complexity of update is 𝑂 (1), and the work complexity of update is
𝑂 ( |𝑎𝑔𝑔𝑅𝑒𝑠 |) as the step complexity and work complexity of arithmetic/comparison operators are
𝑂 (1) and 𝑂 ( |𝑎𝑔𝑔𝑅𝑒𝑠 |), respectively.

4.5 Further Optimizations
We further propose two strategies for acceleration: dynamic switch between pull and push, and
optimization of tensor operators.
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Algorithm 5: Graph Operator aggregate
Input :A subgraph 𝑇𝑆𝑢𝑏𝑔𝑟𝑎𝑝ℎ = (𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠, 𝑜 𝑓 𝑓 𝑠𝑒𝑡, 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠), aggregate data 𝑎𝑔𝑔𝐷𝑎𝑡𝑎, option 𝑜𝑝𝑡 ,

and mode𝑚𝑜𝑑𝑒

Output :The aggregated result 𝑎𝑔𝑔𝑅𝑒𝑠
1 if 𝑚𝑜𝑑𝑒 ==′ 𝑝𝑢𝑠ℎ′ then

// aggregate in push mode

2 𝑔𝑟𝑜𝑢𝑝𝐼𝐷 ← 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 ;
3 𝑔𝑟𝑜𝑢𝑝𝐷𝑎𝑡𝑎 ← index_select(𝑎𝑔𝑔𝐷𝑎𝑡𝑎, 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠);
4 𝑔𝑟𝑜𝑢𝑝𝐷𝑎𝑡𝑎 ← repeat_interleave(𝑔𝑟𝑜𝑢𝑝𝐷𝑎𝑡𝑎, diff(𝑜 𝑓 𝑓 𝑠𝑒𝑡 ));
5 𝑎𝑔𝑔𝑅𝑒𝑠 ← scatter_reduce(𝑔𝑟𝑜𝑢𝑝𝐷𝑎𝑡𝑎, 𝑔𝑟𝑜𝑢𝑝𝐼𝐷, 𝑜𝑝𝑡 );
6 else

// aggregate in pull mode

7 𝑔𝑟𝑜𝑢𝑝𝐷𝑎𝑡𝑎 ← index_select(𝑎𝑔𝑔𝐷𝑎𝑡𝑎, 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠);
8 𝑐𝑔𝑟𝑜𝑢𝑝𝐼𝐷 ← 𝑜 𝑓 𝑓 𝑠𝑒𝑡 ;
9 𝑎𝑔𝑔𝑅𝑒𝑠 ← segment_csr(𝑐𝑔𝑟𝑜𝑢𝑝𝐼𝐷,𝑔𝑟𝑜𝑢𝑝𝐷𝑎𝑡𝑎, 𝑜𝑝𝑡 );

10 expand 𝑎𝑔𝑔𝑅𝑒𝑠;
11 return 𝑎𝑔𝑔𝑅𝑒𝑠

Dynamic Switch Between Pull and Push. The pull and push modes previously introduced
in aggregate can also be supported by other graph operators. Their difference mainly lies in
neighborSelect and aggregate, since other graph operators remain the same. For neighborSelect,
we select the out-neighbors of active vertices in push mode and select the in-neighbors of all vertices
in pull mode. For aggregate, the push mode involves atomic operations because multiple vertices
may simultaneously update the value of the same vertex. In contrast, pull mode can avoid atomic
operations but introduces unnecessary computational overhead due to involving all vertices for
computation. Thus, for iterations with a large number of active vertices, pull mode performs better
as it avoids atomic operators; for iterations with a smaller number of active vertices, push mode
performs better as it avoids computations of inactive vertices. Thus, we propose to dynamically
switch the mode based on the workload in each iteration to achieve better performance.
Optimization of Tensor Operators. TGraph provides two interfaces and five graph operators
to shield the graph algorithms from the detailed tensor operators, which enables the seamless
integration of optimized tensor operators. We further optimize some of the tensor operators to deal
with the unbalanced workload in graph computation. For example, in the GPU implementation of
segment_csr, only one thread is assigned to each vertex for the reduction of their neighboring data,
which will lead to workload imbalance at the thread level. Thus, we further optimize segment_csr
by assigning different numbers of threads to each vertex based on the size of their neighboring
data to achieve work balance.

5 Scaling Strategies
The limited storage space of existing hardware accelerators poses challenges for TGraph in process-
ing large graph datasets. We propose tensor-based graph compression and the out-of-XPU-memory
computation strategies to deal with large-scale graphs.

5.1 Tensor-based Graph Compression
Our graph compression module is driven by the fact that many real-world graphs contain a lot of
redundancies [6, 66]. Although a number of approaches have been proposed to compress graphs
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Fig. 4. The compressed graph storage

[4, 5, 7, 12, 16, 59], it is not straightforward to migrate existing methods to our tensor-based
computation architecture, as we need to represent the compressed graph in tensors and expand
our computation model to deal with the compressed graphs efficiently.
Compressed Graph Storage based on Tensors. Our compression strategy is inspired by [12], i.e.,
replacing repeated neighbor sequences by virtual vertices. The repeated neighbor sequences above
a given frequency can be recursively identified from length 2. Thus, the neighbor set of a virtual
vertex may contain other virtual vertices, thereby leading to the nesting of virtual vertices. Given a
graph 𝐺 , we denote the compressed graph as 𝐺𝑐 with vertices 𝑉 (𝐺) ∪𝑉 ′, where 𝑉 ′ is the set of
virtual vertices. 𝐺𝑐 can be represented by multiple-layered CSRs according to the nesting depth of
vertices. The nesting depth of vertex 𝑣𝑖 is 𝑛𝑒𝑠𝑡 (𝑣𝑖 ) = max𝑣𝑗 ∈𝑉𝑁 (𝑣𝑖 ) 𝑛𝑒𝑠𝑡 (𝑣 𝑗 ) + 1, where𝑉𝑁 (𝑣𝑖 ) is the
set of virtual neighbors of 𝑣𝑖 . If the neighbor set of 𝑣𝑖 does not contain virtual vertices, 𝑛𝑒𝑠𝑡 (𝑣𝑖 ) = 1.
We use the tensorized CSR to store the subgraph in each layer for the compressed graph 𝐺𝑐 . i.e.,
𝐺𝑐 = {𝐺𝑐

1,𝐺
𝑐
2, . . . ,𝐺

𝑐
𝑙
}, where 𝑙 is the maximum nesting depth, and the depths of 𝑛𝑒𝑖𝑔ℎ𝑜𝑟𝑠𝑖 in 𝐺𝑐

𝑖

are less than 𝑖 . Besides, we also need to store a bool tensor 𝑣𝑖𝑟𝑡𝑢𝑙𝑀𝑎𝑠𝑘 to indicate whether the
vertex is virtual.

Fig. 4 gives the tensorized compression storage for Graph 𝐺𝑐 . The repetitive vertex sequences
(1, 2) and (4, 5) can be represented as the virtual vertices 𝑣7 and 𝑣8. Since (4, 5, 6) is also a repetitive
sequence, we can further abstract a virtual vertex 𝑣9 to represent (8, 6). As shown in Fig. 4, 𝑣7
and 𝑣8 have the nesting level of 1, which means that none of these vertices contain virtual vertex
neighbors. Similarly, vertices 𝑣1, 𝑣2, 𝑣4, 𝑣5, 𝑣6, and 𝑣9 have nesting level of 2 while 𝑣0 and 𝑣3 have the
nesting level of 3.
Computation on Compressed Graph. Based on the compression graph 𝐺𝑐 , we need to adjust
our general computation framework in Alg. 1 to complete the computation on the compressed
graphs. Note that the neighbors of a vertex may be distributed in multiple layers. Thus, we need to
make sure each vertex can correctly collect the data from all the neighbors in the original graphs in
pull mode and each vertex can correctly send the data to all its neighbors in the push node. Now we
first take pull mode as an example to illustrate such dependency. The update of vertex 𝑣1 depends
on the values of vertex 𝑣3 and the virtual vertex 𝑣8, while the state of 𝑣8 is decided by vertices 𝑣4
and 𝑣5. This means that before updating 𝑣1 at level 2, we need to first update 𝑣8 at level 1. Since the
active vertices may be distributed in multiple layers, we need to traverse each layer to get a part
of the active subgraph. Specifically, we first check layer 1, call the TENSORIZE and COMPUTE
function. Then, all the original and virtual vertices have been updated, and we can safely move to
the next layer. By traversing from layer 1 to layer 𝑙 , we can make sure that when we pull the data
from a vertex 𝑣 in layer 𝑖 , 𝑣 has already been updated in previous 𝑖 − 1 layers. In the push mode, we
will traverse the layers from 𝑙 to 1, to make sure that the data will be pushed down to the bottom
level, we add the virtual vertices that need to be further pushed down into the active vertex set.

5.2 Out-of-XPU-memory Computation
Even in the compression form, large graphs may still not fit into the hardware accelerator (XPU).
We further study the out-of-XPU-memory computation to extend TGraph for large graphs, where
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Algorithm 6: Edge-balanced Partition
Input :A graph 𝑇𝐺 = (𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠, 𝑜 𝑓 𝑓 𝑠𝑒𝑡, 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠) and the partition number 𝑝
Output :A set of subgraphs 𝑇𝑆1, 𝑇𝑆2, . . ., 𝑇𝑆𝑝

1 𝐴𝑣𝑔𝐸 ← len(𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠)/𝑝 + 1;
2 𝑡𝑎𝑟𝑔𝑒𝑡𝑃𝑜𝑠 ← arange(0, mul(𝐴𝑣𝑔𝐸 , 𝑝 + 1), 𝐴𝑣𝑔𝐸 );
3 𝑟𝑒𝑎𝑙𝑃𝑜𝑠 ← searchsorted(𝑜 𝑓 𝑓 𝑠𝑒𝑡 , 𝑡𝑎𝑟𝑔𝑒𝑡𝑃𝑜𝑠);
4 for i = 0 to 𝑝 − 1 do
5 𝑠𝑢𝑏𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 ← arange(𝑟𝑒𝑎𝑙𝑃𝑜𝑠 [𝑖], 𝑟𝑒𝑎𝑙𝑃𝑜𝑠 [𝑖 + 1]);
6 𝑇𝑆𝑖+1 ← extractSubgraph (𝑇𝐺 , 𝑠𝑢𝑏𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠);

7 return 𝑇𝑆1, 𝑇𝑆2, . . ., 𝑇𝑆𝑝 ;

the host memory serves as secondary storage, and the graph is partitioned and scheduled into XPU
for computation. In the following, we will first introduce our tensor-based graph partition strategy
and then elaborate on the pipelined scheduling strategy.

5.2.1 Tensor-based Graph Partition. We provide two strategies to partition the input graph into
multiple subgraphs.
Edge-Balanced Partition (EBP). We first propose EBP, which can quickly create a balanced
partition of edges within each subgraph. The EBP process can be efficiently implemented using
tensor operators, as illustrated in Alg. 6. First, we obtain the ideal average number of edges 𝐴𝑣𝑔𝐸
and the ideal partition position 𝑡𝑎𝑟𝑔𝑒𝑡𝑃𝑜𝑠 on 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 (lines 1 to 2). Since the ideal position may
partition the neighbors of a vertex into two parts, we need to find the real partition position 𝑟𝑒𝑎𝑙𝑃𝑜𝑠
close to 𝑡𝑎𝑟𝑔𝑒𝑡𝑃𝑜𝑠 based on 𝑜 𝑓 𝑓 𝑠𝑒𝑡 to make sure that the neighbors of a vertex are in the same
subgraph. We can achieve this using tensor operator searchsorted, which performs a binary
search to search the closest element in the ordered sequence 𝑜 𝑓 𝑓 𝑠𝑒𝑡 for each element in 𝑡𝑎𝑟𝑔𝑒𝑡𝑃𝑜𝑠
in parallel (line 3). The values in 𝑟𝑒𝑎𝑙𝑃𝑜𝑠 are the real boundaries for the vertices partition, based on
which we can obtain the vertices set for each subgraph (line 5). Then, based on these vertices, we
can extract the subgraph from 𝑇𝐺 , which consists of three steps, i.e., vertexSelect, neighborSelect,
and reconstruct (line 6).
Well-Connected Partition (WCP). For algorithms with computational locality such as WCC,
TGraph employs WCP to maximize the internal connectivity within the resulting subgraphs. The
main idea is to conduct multiple rounds of Multi-source BFS on graph 𝐺 to partition 𝐺 into
a relatively large number of connected blocks and then merge these blocks into a number of
subgraphs to balance connectivity and subgraph size. Specifically, we use a tensor 𝑏𝑙𝑜𝑐𝑘𝐼𝐷 of size
𝑛 to record the block ID to which each vertex belongs, which is initially unassigned. Then we
randomly select multiple source vertices from unassigned vertices and conduct BFS search, vertices
traversed by source vertices belong to the same block where their block Id is the source vertex ID.
When the current multiple-source BFS terminates, the number of vertices in the block that exceeds
a predefined size will be marked as unassigned. Then, another round of multi-source BFS will be
performed on those unassigned vertices. After several rounds of multi-source BFS, some vertices
may still remain unassigned. TGraph performs WCC on the subgraph formed by these vertices,
with each connected component forming a block. Finally, TGraph merges these blocks into several
subgraphs to obtain size balanced and well connected subgraphs. To speed up the process of WCP,
we can first partition the graph by EBP and then conduct multi-source BFS and WCC in subgraphs
on GPU by a scheduling strategy.
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Fig. 5. Workflow of out-of-XPU-memory computation

5.2.2 The pipeline architecture. We first present the workflow of the pipeline architecture and then
introduce the scheduling strategy.

Workflow. The workflow of the out-of-XPU-memory computation is shown in Fig. 5. First, we
partition an input graph 𝐺 into several subgraphs 𝑆1, 𝑆2, ..., 𝑆𝑝 and put them into the LoadQueue.
Then, we load the subgraph from the LoadQueue into XPU for computation until the computation
of the entire graph converges, i.e., the LoadQueue is empty. Specifically, the processing of every
subgraph 𝑆𝑖 consists of two steps: (1) load 𝑆𝑖 into XPU, (2) perform computation on 𝑆𝑖 on XPU.
We propose a pipeline architecture to overlap the subgraph loading and subgraph computation to
improve the overall performance, i.e., while a subgraph is undergoing computation, the subsequent
subgraph is being loaded from the host to the device. There are two threads responsible for these
two steps. The loading thread is responsible for retrieving the ID of the subgraph that needs to
be loaded from the LoadQueue and loading the corresponding subgraph into ComputeQueue. The
processing thread retrieves a subgraph from ComputeQueue and does computation on this subgraph.
We utilize the shared data to record the latest vertex data for inter-subgraph message passing. The
shared data is located in device (XPU) memory for efficient data access. For each subgraph, we
first fetch the latest vertex data from the shared area previously updated by other subgraphs, then
compute the subgraph until convergence, and finally update computed results back to the shared
data, thus enabling message passing.

Queue-based Scheduling Strategy. 𝐿𝑜𝑎𝑑𝑄𝑢𝑒𝑢𝑒 is used to store the id of the graphs that need
to be scheduled. However, not all subgraphs necessitate computation within an iteration. TGraph
selectively schedules the subgraphs requiring updates into XPU for computation, thereby avoiding
unnecessary subgraph scheduling. Specially, following the computation of a subgraph, a "push"
operator will be executed on this subgraph to update the outgoing neighbors of vertices within
the subgraph, and then TGraph identifies the vertices that can be updated. The subgraph which
contains these vertices will be pushed into 𝐿𝑜𝑎𝑑𝑄𝑢𝑒𝑢𝑒 , waiting for scheduling. It is challenging
to identify the subgraph to which each vertex belongs efficiently by tensor operators due to the
absence of support for HashTable. Hence, by renumbering the vertex IDs to attain contiguous
vertex IDs within each subgraph, TGraph can efficiently retrieve the subgraph ID for each vertex in
a given vertex set using searchsorted, as searchsorted can locate the closest boundary vertex
Id for a given vertex.
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Table 3. Graph datasets

Number Datasets Abbr. |V| |E|
1 cit-Patents CP 3,774,768 16,518,948
2 hollywood-09 HW 1,139,905 115,031,232
3 indochina-04 IC 7,414,866 304,472,122
4 kron_g500-logn21 KG 2,097,152 182,084,020
5 soc-LiveJournal LJ 4,847,571 137,987,546
6 soc-orkut OR 2,997,166 212,698,418
7 soc-sinaweibo SW 58,655,849 522,642,142
8 soc-twitter ST 21,297,772 530,051,618
9 arabic-2005 AR 22,744,080 639,999,458
10 it-2004 IT 41,291,594 1,150,725,436
11 Twitter TW 41,652,231 2,936,637,846
12 gsh-2015 GS 68,660,142 3,561,308,734
13 sk-2005 SK 50,636,151 3,620,126,660

6 Experiments
In this section, we conduct extensive experimental studies to evaluate the performance of TGraph,
including comparison with existing systems, scalability, extensibility, performance breakdown,
cost-effective analysis, and optimizations evaluation.
Datasets. Table 3 shows the statistics of 13 real-world graph datasets evaluated in this paper, where
|𝑉 | is the number of vertices and |𝐸 | is the number of edges. Datasets 1-8 are graphs of normal size,
which are evaluated in most tested cases, while datasets 9-13 are large and super-large datasets for
the scalability evaluation. These datasets can be downloaded from SNAP [40], WebGraph [6], or
Network Repository [51]. We convert these datasets into symmetric graphs to extend the number of
edges [65]. For simplicity, we remove duplicate edges and self-loops from these datasets following
the setting of [56]. Note that TGraph can also handle directed/undirected graphs with duplicate
edges and self-loops.
Baselines. We compare TGraphwith seven state-of-the-art graph systems in three categories: CPU-
only [47, 58], GPU-only [3, 18, 65, 70], and CPU-GPU [54] cooperative systems. Correspondingly,
TGraph has three versions: TGraphC, TGraphG, and TGraphCG for CPU, GPU, and out-of-XPU-
memory computation, respectively.
• Gunrock. Gunrock is a GPU-only graph processing system that adopts the data-centric
computation model. The source code of Gunrock 2.0 is available at [25].
• cuGraph. cuGraph is a part of Nvidia rapids data analytics ecosystem which focuses on graph
analytics tasks on GPU. We evaluate cuGraph 22.10, which is available at [50].
• Groute. Groute is a GPU-only graph processing system that supports multi-GPU computation.
The official GitHub repository of Groute is at [24].
• GraphBlast. GraphBlast is a GPU-only graph system based on linear algebra. The source code
is available at [26].
• Subway. Subway is a CPU-GPU cooperative graph system, which only loads the subgraph
composed of active edges into GPU memory for computation based on the subgraph-centric
model. The source code is available at [2].
• Galois. Galois is a state-of-the-art CPU-only shared memory graph system that implements
an amorphous data parallelism computation model. Its GitHub repository is at [32].
• Ligra. Ligra is a lightweight CPU-only graph system on a single machine, and the source
code of Ligra can be found at [33]. We use CilkPlus as its multithreading implementation.

Applications. We evaluate five graph algorithms: PageRank (PR), Breadth-First Search (BFS),
Single Source Shortest Path (SSSP), Weakly Connected Components (WCC), and Hyperlink-Include
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Table 4. Overall comparison of execution time (ms)

Alg. G CPU-based system GPU-based system
TGraphC Galois Ligra TGraphG Gunrock cuGraph GraphBlast Subway Groute

PR

CP 18.88 15.61 61.43 2.71 5.02 3.55 12.27 10.84 9.87
HW 23.24 12.85 90.19 0.48 3.91 2.79 21.32 28.88 3.91
IC 69.10 55.38 250.19 3.22 15.38 6.97 68.78 43.26 20.37
KG 45.15 45.91 120.17 1.35 15.64 3.72 - 125.55 24.12
LJ 49.56 29.45 90.31 2.54 6.86 5.86 20.74 54.12 17.37
OR 41.68 57.73 249.84 1.70 15.46 11.13 - 59.37 22.62
SW 567.88 367.42 1399.69 51.94 93.53 67.13 135.33 148.08 129.68
ST 325.45 159.35 544.64 13.07 421.76 47.33 oom 171.40 59.37

BFS

CP 288.31 67.35 48.87 6.71 7.88 56.42 13.86 59.01 13.93
HW 253.80 27.25 19.33 6.12 9.67 59.37 23.11 57.88 5.15
IC 1901.11 91.24 450.47 27.72 44.94 227.31 65.88 243.76 17.37
KG 380.31 77.68 9.81 5.74 26.50 62.9 36.10 142.24 19.54
LJ 623.08 76.27 61.78 11.41 15.01 109.33 19.39 85.18 27.41
OR 515.07 88.87 29.05 7.93 30.97 83.33 44.12 101.83 27.26
SW 3680.31 982.34 468.50 77.49 143.47 457.48 85.11 609.34 139.64
ST 2838.24 460.85 170.25 47.72 109.35 335.15 oom 480.64 93.51

HITS

CP 38.83 35.47 117.24 4.74 9.82 7.89 22.20 27.92 -
HW 55.28 27.51 238.94 2.34 24.48 4.81 42.33 239.96 -
IC 152.35 91.75 621.84 5.85 176.79 17.04 127.94 627.31 -
KG 96.66 77.38 318.87 8.27 41.75 8.71 68.66 417.36 -
LJ 105.63 76.28 170.81 7.62 19.58 14.41 40.31 328.63 -
OR 86.27 88.54 458.12 14.16 34.24 30.13 91.48 537.72 -
SW 1126.11 982.54 2308.34 85.50 330.65 120.23 160.10 1899.58 -
ST 534.71 396.34 1928.65 41.83 249.27 80.41 oom 1447.01 -

SSSP

CP 359.21 90.47 149.64 20.06 9.51 468.56 75.43 77.39 16.49
HW 358.16 28.45 280.39 15.93 11.72 553.30 141.28 91.76 5.44
IC 3167.24 175.34 969.12 59.31 47.84 762.27 371.74 420.11 21.06
KG 376.59 135.45 91.42 18.71 31.44 653.04 74.70 247. 59 23.72
LJ 841.31 145.38 111.31 19.91 11.79 678.71 100.61 152.87 24.20
OR 509.98 198.54 310.46 25.19 38.45 900.54 265.05 186.05 30.65
SW 3519.31 1651.25 1760.34 129.83 270.42 oom 219.61 777.34 168.98
ST 2662.24 651.28 728.30 81.81 122.08 oom oom 885.17 102.60

WCC

CP 303.02 190.25 168.81 26.78 25.73 342.58 60.85 77.17 33.45
HW 334.49 214.27 131.07 11.15 17.68 381.07 98.28 182.09 39.19
IC 2689.36 319.68 732.85 50.21 121.13 518.13 262.02 624.38 128.02
KG 537.78 411.28 128.51 17.26 47.08 389.98 126.85 176.31 58.87
LJ 1068.34 271.48 150.64 29.43 18.75 378.45 - 141.36 42.69
OR 498.38 218.24 229.47 37.02 60.38 387.32 - 289.62 67.19
SW 3278.64 1650.31 2457.05 168.77 516.79 421.76 - 727.13 299.94
ST 3218.52 1268.21 767.45 87.58 350.13 299.14 - 703.34 129.91

Topic Search (HITS), which have been used in many graph processing systems [12, 25, 47, 54, 58].
We select the same vertex as the source across different systems when evaluating BFS and SSSP. We
run each algorithm 10 times and report the average running time. All PageRank and HITS times
are standardized to a single iteration.
Hardware and Software Setup. We evaluate TGraph on a cloud server equipped with 160GB of
RAM, an Intel Xeon Gold 6330 CPU with 14 cores, and an Nvidia GeForce RTX 3090 GPU with 24
GB device memory. The operating system is Ubuntu 20.04. TGraph is implemented with PyTorch
1.11, torch-scatter 2.11, CUDA 11.3. The details of the hardware and software for extensibility
testing will be introduced in Section 6.4.
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Table 5. Detailed performance profiling

Alg Systems G Time
(ms)

L1 Cache
Throughput(%)

L2 Cache
Throughput(%)

DRAM
Throughput(%)

Atomic
Cycles

PR

TGraphG
OR 1.64 49.33 31.41 69.61 0
SW 51.52 27.18 27.93 37.31 0

Gunrock OR 15.26 23.22 29.25 46.77 197,760,472
SW 91.53 15.58 17.86 25.30 446,767,085

Groute OR 21.34 16.63 14.67 29.23 200,380,262
SW 116.54 11.38 18.74 24.77 532,228,806

BFS

TGraphG
OR 1.98 54.62 61.35 48.00 0
SW 17.25 42.32 45.36 73.37 0

Gunrock OR 15.79 20.66 24.59 43.37 128,539,250
SW 119.80 9.75 9.05 13.98 127,795,237

Groute OR 15.95 17.61 25.90 41.30 128,861,613
SW 72.69 15.89 18.70 26.22 330,390,219

6.1 Overall Performance Comparison

Overall Performance Evaluation. We compare the overall performance of the evaluated systems
on both CPU and GPU. The execution time is reported in Table 4, where bolded values highlight
the best result, underlined values represent the second-best result, "-" denotes that the system
cannot run successfully, and oom represents out-of-memory. First, the GPU-based systems generally
outperform the CPU-based systems. However, for computationally sparse graph applications such
as BFS, where the parallelism of GPUs cannot be fully exploited, the CPU-based systems perform
comparably to the GPU-based systems and, in some cases, even better. Second, among the CPU-
based systems, TGraphC do not achieve the best performance, which is within expectation, as the
Pytorch optimization for CPU is very limited. Some tensor operators such as scatter_reduce and
segment_csr even fail to utilize multi-core parallelization. Third, among the GPU-based systems,
TGraphG performs best in most cases and is still competitive compared to the optimal results in the
remaining cases. Specifically, TGraphG achieves significant improvements for PageRank and HITS.
Detailed Performance Profiling. We further analyze the performance of TGraphG by profiling it
and the two most competitive baselines (Gunrock and Groute) using Nsight Compute. Here, we
select two representative algorithms, PR and BFS, and profile the iteration with the most active
vertices at the kernel level. As shown in Table 5, we profile systems on the following metrics:
the execution time of the profiled kernels, memory throughput at different levels including L1
Cache Throughput, L2 Cache Throughput, and DRAM Throughput, and atomic cycles which is the
number of clock cycles involving atomic operators. Gunrock and Groute involve numerous atomic
operations as they only use the push mode while TGraphG can switch to the pull computation mode
to avoid atomic operators. Since excessive atomic operations will affect thememory access efficiency,
TGraphG outperforms Gunrock and Groute in L1 Cache Throughput, L2 Cache Throughput, and
DRAM Throughput. Such memory throughput leads to better performance as BFS and PR are both
memory-intensive tasks whose performance is mainly affected by memory access. For BFS on SW
datasets, Gunrock and Groute take a total time of 143.47 ms and 139.64 ms, while the iteration with
the most active vertices cost a time of 119.80 ms and 72.69 ms, respectively, occupying the majority
of the time. Consequently, employing the pull mode during these intense computation iterations
can effectively improve the overall performance of graph applications.

6.2 Scalability Evaluation
We evaluate the scalability of TGraph in handling large graphs, including graph compression and
out-of-XPU-memory computation.
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Table 6. Graph compression evaluation on TGraphG

G Depth
Comp.

Ratio

Execution Time (ms)
PR BFS HITS SSSP WCC

Origin Comp. Origin Comp. Origin Comp. Origin Comp. Origin Comp.
AR 11 4.35 66.24 11.83 1034.24 679.81 108.24 32.81 2228.29 822.21 1348.47 674.31
IT 11 4.65 - 18.35 - 962.65 - 37.84 - 1167.18 - 714.14
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Fig. 6. Comparison of execution time (s) for the out-of-XPU-memory computation

Graph Compression. We evaluate TGraphG on AR and IT that have relatively large sizes but
cannot fit into the XPU memory. The results are shown in Table 6, where depth represents the
maximum nesting depth of virtual vertices in the compressed graph, and the compression ratio
represents the ratio of storage size of the original graph to that of the compressed graph. We list
the results of five graph applications. TGraphG achieves a better speedup in PR and HITS because
the computational load of PR and HITS is heavier, allowing better utilization of data redundancy.
Moreover, the original graph of IT contains around two billion edges and cannot be handled by
TGraphG due to the limited device memory space. However, the compressed form of IT can be
efficiently processed by TGraphG, indicating the capability of graph compression and compressed
graph computation for handling large-scale graphs.
Out-of-XPU-memory Computation. We evaluate the effectiveness of our out-of-XPU-memory
computation mechanism by comparing TGraphCG with two CPU-based graph systems (Ligra [58]
and Galois [47]) and an out-of-GPU-memory based graph system Subway[54]. Specifically, we
evaluate five graph applications on TW, GS, and SK, which cannot fit into the device (NVIDIA
RTX 3090 with 24GB memory). Fig. 6 reports the end-to-end execution time for these four systems,
where Ligra fails to execute the SSSP on SK due to the high memory demand. We have the follow-
ing observations. (1) Among the evaluated algorithms, TGraphCG achieves the most significant
improvements for PR and HITS. Taking PR as an example, TGraphCG is up to 3.57×, 18.42×, and
12.83× faster than Galois, Ligra, and Subway, respectively. This shows that pipeline architecture in
TGraphCG can achieve superior end-to-end performance through overlapping subgraph computa-
tion and transfer, especially for computationally intensive applications such as PR and HITS. (2)
TGraphCG also performs the best for the WCC algorithm due to the WCP graph partition method,
which ensures a high intra-subgraph connectivity and substantially reduces the computational
workload of WCC. (3) For BFS and SSSP, Ligra and Galois exhibit the best performance, respectively.
Subway costs more time as it includes both data transfer and subgraph generation. TGraphCG does
not perform well on BFS and SSSP as these two algorithms need more iterations to converge in
the out-of-XPU-memory computation, which will cause more redundant vertex updates. Overall,
there is no best choice among the systems for out-of-XPU-memory computation. Among the five
algorithms, TGraphCG performs the best for 3 out of 5, and Ligra performs the best for 1 out of 5.

6.3 Extensibility Evaluation
We evaluate the extensibility of TGraph by deploying and running it on different hardware backends
and software frameworks.

Proc. ACM Manag. Data, Vol. 3, No. N1(SIGMOD), Article 81. Publication date: January 2025.



TGraph: A Tensor-centric Graph Processing Framework 81:21

Table 7. Execution time (ms) on machine 1

Systems PR HITS BFS
CP HW LJ CP HW LJ CP HW LJ

TGraph 4.52 8.31 10.47 8.31 16.12 20.09 135.21 139.54 322.73
Ligra 175.21 60.93 230.27 176.38 104.82 236.84 42.07 12.51 37.62
Galois 29.58 20.41 54.56 102.71 32.16 146.65 79.82 53.21 114.24

Table 8. Execution time (s) on machine 2

Systems PR HITS WCC
CP HW LJ CP HW LJ CP HW LJ

TGraphG 0.069 0.121 0.169 0.121 0.246 0.327 0.681 0.573 0.772
Ligra 0.169 0.114 0.283 0.268 0.204 12.58 0.053 0.015 0.043

Networkx 26.228 88.201 68.681 28.328 66.588 63.877 1.945 0.877 2.263

Table 9. Execute time (ms) on machine 3

systems PR SSSP BFS
CP HW LJ CP HW LJ CP HW LJ

TGraphG 4.78 1.39 2.75 25.71 16.23 25.51 7.58 7.84 13.98
Gunrock 8.23 5.14 6.88 14.08 15.23 17.64 11.02 13.09 15.22
Groute 22.69 13.79 40.49 20.87 8.73 26.99 16.76 7.53 24.83

GraphBlast 16.92 27.36 27.39 45.04 39.49 51.02 28.96 34.16 41.49

Table 10. Execute time (ms) on different framework

Framework PR BFS HITS SSSP WCC
Tensorflow 12.55 278.91 21.94 298.25 289.67
Pytorch 1.70 7.93 14.16 25.19 37.02

Extensibility on Hardware Backends. Besides Nvidia GeForce RTX 3090 GPU, we also deploy
and run TGraphG on two desktop computers and one cloud server with different hardware backends:
Machine 1 - A machine equipped with an AMD 7700XT GPU, a 12400f CPU, and 16GB memory;
Machine 2 - A Mac Mini equipped with an M2 chip and 16GB memory; Machine 3 - A machine
equipped with a datacenter-level GPU V100. We conduct experiments using PyTorch on these
three machines. (1) For machine 1, we compare TGraphG accelerated by AMD 7700XT with two
CPU-based graph systems (Ligra and Galois) since existing GPU-based systems are developed
on CUDA and thus cannot run on this machine. We show the results in Table 7, where TGraphG
performs the best for PR and HITS. The performance of TGraphG on BFS is not the best, and it
might be because the operator scatter_reduce used in BFS on the ROCm backend is not well
optimized and CPU-based systems inherently perform well for BFS. (2) For machine 2, we compare
TGraphG with Ligra and Networkx [27], as we fail to compile Galois successfully. As shown in Table
8, TGraphG and Ligra exhibit similar performance for PR and HITS, whereas Ligra outperforms
TGraphG in BFS. The underlying reason might also be the inadequate optimization of PyTorch on
the MPS backend. However, TGraphG still outperforms Networkx in all the cases. (3) For machine 3,
we compare TGraphG with the most competitive three GPU-based baselines Gunrock, Groute, and
GraphBlast. As shown in Table 9, the performance of TGraphG on the datacenter-level GPU remains
excellent, consistent with the results obtained on Nvidia RTX 3090. Overall, we can successfully
deploy and run TGraphG on different hardware backends and outperform the state-of-the-art
in-memory systems in most cases.
Extensibility on Software Frameworks. To verify the extensibility of TGraph across software
frameworks, we also built TGraphG on TensorFlow by slightly modifying the code. Table 10 shows
the execution time of five applications on PyTorch and TensorFlow for the dataset OR. Compared
to PyTorch, TensorFlow is much slower, indicating the inadequate optimization of the required
tensor operators within TensorFlow.

The above analysis shows that TGraph can perform graph computation across different hardware
backends and software frameworks. With the ongoing advancement of DL, we believe that TCRs
will provide more efficient operators on diverse heterogeneous hardware, enabling TGraph to
accelerate graph computation.

6.4 Performance Breakdown
Fig. 7 shows the breakdown of the execution time for the ten computation combinations formed
by two datasets (LJ and OR) and five graph applications at the level of tensor operators. From this
figure, we have the following observations.

(1) Across all computation combinations, the selection operators (index_select and indexing)
account for the majority of the execution time. In TGraphG, the select operator dominates the
execution time due to its heavy usage in both TENSORIZE and COMPUTE phases, including the
vertexSelect, neighborSelect, and aggregate graph operators. The proportion of the select operator
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Fig. 9. Evaluation of the optimized operator
to some extent reflects the computational workload of the algorithm. For instance, the average
select operator overhead in PR reaches 68%, which implies a substantial need for data selection.
(2) Operator overhead is influenced by both data scale and data distribution. In HITS, the

proportion of segment_csr varies between the two datasets, while the overhead of index_select
scales with data size, implying that the overhead of segment_csr is also associated with data
distribution. segment_csr is used to aggregate data, the performance of which diminishes with
highly imbalanced data distribution within each group, leading to unbalanced thread workloads.
Effectively implementing the distribution-sensitive operators is worth to be explored in the future.

6.5 Cost-effective Analysis
Here, we provide a comparison of cost-effectiveness between TGraphG and Galois on CPU. The
cost metric is the price of the VM in Azure. For Galois, we select the CPU-only VM D2ds_v5 with 8
cores and 32GB memory. For TGraphG, we choose the VM equipped with GPU, matching the CPU
core number and memory size of D2ds_v5. Specifically, we select three GPU VMs: NC4as_T4_v3
(with an NVIDIA T4 GPU), NC6s_v2 (with an NVIDIA P100), and NC6s_v3 (with an NVIDIA V100).
The cost of these three VMs is that of D2ds_v5 multiplied by 1.15×, 4.6×, and 6.6×, respectively.
Fig. 8 shows the speedup of TGraphG compared to Galois, where the dashed lines represent the
execution time required by TGraphG to be more cost-effective than Galois on three VMs. The
execution time of each algorithm is the total time over datasets 1-8. Taking NC4as_T4_v3 as an
example, TGraphG is more cost-effective than Galois only when its speedup on this VM compared
to Galois exceeds 1.15×. As shown in Fig. 8, TGraphG is more cost-effective compared to Galois: 5
out of 5 algorithms for T4, 3 out of 5 algorithms for P100, and 4 out of 5 algorithms for V100.

6.6 Optimization Techniques Evaluation
We evaluate the two optimization strategies in Section 4.5 and discuss the effect of the DL compiler
technique on TGraphG.
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Table 11. Execution time(ms) of different computation modes

Datasets CP HW IC KG OR LJ SW ST

BFS
TGraph𝑝𝑢𝑙𝑙 24.48 19.61 94.72 31.87 44.99 40.46 294.58 327.73
TGraph𝑝𝑢𝑠ℎ 35.05 28.31 77.47 38.99 51.03 39.01 238.57 153.46
TGraphG 6.71 6.12 27.27 5.74 7.93 11.41 77.49 47.47

SSSP
TGraph𝑝𝑢𝑙𝑙 34.98 19.39 91.72 32.24 46.58 38.96 169.66 319.34
TGraph𝑝𝑢𝑠ℎ 39.56 32.63 89.31 45.76 58.39 44.06 256.55 167.87
TGraphG 20.06 15.93 59.31 18.71 25.19 19.91 129.83 81.81

WCC
TGraph𝑝𝑢𝑙𝑙 54.12 35.56 108.63 50.94 322.24 230.56 391.38 423.97
TGraph𝑝𝑢𝑠ℎ 155.17 127.73 - 164.69 92.91 65.73 - -
TGraphG 26.78 11.15 50.21 17.26 37.02 29.43 168.77 87.58

Table 12. Effect of DL compiler on neighborSelect
CP HW IC KG LJ OR SW ST

neighborSelect 3.31 ms 3.77 ms 11.94 ms 1.57 ms 3.79 ms 2.57 ms 5.05 ms 7.21 ms
neighborSelectcompile 2.61 ms 3.01 ms 7.86 ms 1.34 ms 3.11 ms 2.14 ms 4.61 ms 5.21 ms

SpeedUp 1.12× 1.25× 1.52× 1.17× 1.22× 1.21× 1.09× 1.38×

Evaluation of the Computation Mode. To evaluate the effectiveness of the computation mode
adopted by TGraphG, we compare TGraphG with its two variants, TGraphpush and TGraphpull,
which adopt the push-only and pull-only computation mode, respectively. Table 11 shows the
performance of three representative algorithms: BFS, SSSP, and WCC. TGraphpush fails to complete
the computation of WCC on IC, SW, and ST due to the large memory demand for 𝑔𝑟𝑜𝑢𝑝𝐼𝐷 and
𝑔𝑟𝑜𝑢𝑝𝐷𝑎𝑡𝑎 as all vertices are active during the first iteration. In the remaining cases, TGraphG
outperforms both TGraphpush and TGraphpull, which proves the effectiveness of the dynamic mode
switch strategy.
Evaluation of the Tensor Operator Optimization. Fig. 9 shows the overall speedup of TGraphG
when using the optimized tensor operator on the five graph applications. Generally, TGraphG
with optimized 𝑠𝑒𝑔𝑚𝑒𝑛𝑡_𝑐𝑠𝑟 gains the speedup across all test datasets, with particularly significant
improvement on the IC, KG, and ST, which is consistent with their highly skewed degree distribution.
Among the five algorithms, BFS and SSSP have a relatively lower speedup because they adopt push
mode in most iterations, which does not involve 𝑠𝑒𝑔𝑚𝑒𝑛𝑡_𝑐𝑠𝑟 while the remaining three algorithms
achieve significant improvement as they use pull mode in more iterations, which can be accelerated
by optimized 𝑠𝑒𝑔𝑚𝑒𝑛𝑡_𝑐𝑠𝑟 .
Effect of the DL Compiler. We evaluate the effect of the built-in compiler in PyTorch on our
system performance. We only compile the graph operator neighborSelect as the custom tensor
operator segment_csr used in graph operator aggregate cannot be compiled [63], and the cost of
the remaining operators is negligible. Table 12 shows the total execution time of neighborSelect
with/whithout compilation for the BFS algorithm, where the speedup is 1.12×-1.52× across these
datasets. However, neighborSelect only accounts for an average of 20.54 % of the total execution
time of graph algorithm, and the compilation overhead far exceeds the total execution time of the
algorithm. Thus, TGraph does not employ DL compilers by default.

7 Related Work

CPU-based Graph Processing Systems. (1) shared-memory graph systems process graphs in
a single machine, which consists of one processing unit (host) with one or more CPU cores and
physical memory shared across all the cores. The in-memory systems can load the whole graph into
memory for computation, such as Ligra [58, 59], Galois [47], GraphMat [61], etc. The out-of-core
systems only maintain a small portion of vertices/edges in memory, focusing on partitioning graphs
to reduce disk I/O, such as GraphChi [39], X-Stream [53], GridGraph [76], FlashGraph [73], NXgraph
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[14], Mosaic [42], MiniGraph [77], etc. (2) distributed graph systems aim to accommodate larger
graphs into multiple machines through load balance and communication reduction. Many parallel
computation models were developed, including vertex-centric model (Pregel [43], Giraph [21],
Powergraph [22], etc.), edge-centric model (X-stream [53], Chaos [53], etc.), block/subgraph-centric
model (Giraph++ [62], Grape [17], GraphScope [67] [29], etc.), and linear-algebra based model
(CombBLAS [8], GraphBLAS [34], etc.).
GPU/FPGA-accelerated Graph Processing Systems. A number of graph systems have been
proposed to leverage the parallelism of GPUs. Medusa [75] develops an edge-message-vertex
model tailored for simplifying parallel graph processing on GPUs. CuSha [37] is a vertex-centric
system utilizing G-shards and concatenated windows to address irregular memory access. Frog
[57] proposes a hybrid coloring model to partition vertices, enabling asynchronous computation.
Gunrock [65] introduces a data-centricmodel to process vertex/edge subsets relevant to computation
on GPU and several load-balancing strategies at different granularity. Groute [3] proposes an
asynchronous programming model for irregular graph algorithms on multi-GPUs. cuGraph [18] is
a vertex/edge-centric system with a new data structure to store and partition graphs. GraphBLAST
[70] is a linear-algebra-based framework on GPUs which explored the input and output sparsity to
reduce memory access. Some CPU-GPU collaborated graph systems have also been proposed, such
as TOTEM [20], FinePar [71], Scaph [74], Largegraph [72], and Subway [54]. GraphGen [48], FPGP
[15], and ThunderGP [11] are graph systems accelerated by FPGAs. The above systems are tailored
for specific hardware, which cannot be easily migrated to other hardware accelerators.
Tensor-based Data Processing. The development of DL has created a growing demand for tensor
computation acceleration. Hence, many DL frameworks as well as their compilers and runtimes
are developed, which are referred to as TCRs. To take a free ride on the development of TCRs,
Hummingbird [46] is proposed for accelerating traditional machine learning models by compiling
their pipelines into tensor computations. [38] have made an initial attempt to transform PageRank
into tensor operators on TCRs. TCUDB [31] maps compute-intensive database queries into matrix
multiplication by leveraging NVIDIA Tensor Core Units. TQP [28] transforms relational queries
into tensor operators based on TCRs and it is extended to support mixed SQL/ML workloads [19].
Despite the above progress on non-DL data processing tasks, building an efficient graph processing
system based on tensors with high expressivity, extensibility, and scalability is still challenging.

8 Conclusion
In this paper, we propose the first tensor-based graph processing framework, TGraph, which
can be smoothly deployed and run on different DL frameworks and hardware accelerators with
high expressivity, extensibility, and scalability. We achieved this by: designing a tensor-centric
computation model, which takes tensors as the fundamental unit of graph computation to maximize
the parallelism of tensor operators; abstracting a set of graph operators, which can shield the
computation model from the detailed tensor operators and support the easy implementation of
graph algorithms; proposing scaling strategies including graph compression and out-of-XPU-
memory computation to handle large-scale graphs. Our extensive experimental results show that
TGraph not only outperforms the existing seven state-of-of-the art graph systems in most cases,
but also can run on multiple DL frameworks and hardware backends.
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