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ABSTRACT
The recently proposed historical 𝑘-core query introduces a new

paradigm of structure analysis for temporal graphs. However, the

query processing based on the existing PHC-index, which preserves

the distinct “core time” of each vertex, needs to traverse all vertices

for each query, even though the results usually contain only a small

subset of vertices. Inspired by the traditional 𝑘-shell that ensures

the optimal 𝑘-core query processing, we propose a novel concept

called “core time shell”, which reveals the hierarchical structure of

vertices with respect to their core time. Based on the core time shell,

we design a time-space balanced Merged Core Time Shell index

(MCTS-index). It is theoretically guaranteed that, the MCTS-index

provides the approximately optimal query performance, and has the

approximately same space complexity as the PHC-index. Moreover,

we leverage the MCTS-index to efficiently address the brand-new

“when” historical 𝑘-core queries orthogonal to the current “what”

historical𝑘-core queries. Our experimental results on ten real-world

temporal graphs demonstrate both the superior efficiency of pro-

cessing “what” queries and the effectiveness of processing versatile

“when” queries for the MCTS-index.
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1 INTRODUCTION
Recently, it has been widely recognized that the temporal graphs

should gain more research attention than the static graphs [14].

For example, a variety of real-world temporal graphs have been

studied, such as communication networks [12], social networks [36],
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(a) The static 𝑘-shells and 𝑘-core (grey vertices) with 𝑘 = 2.
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(b) The core time shells for 𝑘 = 2 and the start time 𝑡𝑠 = 2, and
the historical 𝑘-core (grey vertices) until the end time 𝑡𝑒 = 3.

Figure 1: A running example of temporal graph with two
kinds of views: 𝑘-shell and core time shell, respectively.

transaction networks [16], and transportation networks [6], though

their static versions emerged earlier. Thus, the new paradigms of

querying temporal graphs are becoming prevalent research topics.

As a basic query paradigm for temporal graphs, the so-called

“historical” graph queries are to find entities such as vertices, paths,

subgraphs, or even boolean/statistical values from temporal graphs

within a given moment or period. Khurana and Deshpande [9] have

given a visionary taxonomy of historical graph queries. Then, many

research works [2, 7, 18, 25, 30, 31, 33, 34, 37] have appeared, and a

temporal graph analytics system [5] has been proposed to support

developer to implement the query algorithms efficiently.

Among the various historical graph queries, the historical 𝑘-core

query deserves deeper exploration, since the existing state-of-the-

art solution called PHC-query [34] is not guaranteed to be optimal.

In a nutshell, the historical 𝑘-core query aims to find the 𝑘-core of
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Table 1: Examples of when query for the historical 𝑘-core. Note that, the words in square brackets can be replaced by other
meaningful words in the context, which actually represent user-defined conditions.

Id Semantics (given the start time 𝑡𝑠 and cohesiveness 𝑘) Other Input Output

q1 When will the core contain the given [vertices]? A vertex set 𝑉 The earliest end time 𝑡𝑒 s.t. 𝑉 ⊆ C𝑘[𝑡𝑠 ,𝑡𝑒 ]
q2 When will the core grow to the given [size]? An integer 𝑠 The earliest end time 𝑡𝑒 s.t. |C𝑘[𝑡𝑠 ,𝑡𝑒 ] | ≥ 𝑠

q3 When will the core have the [greatest] [average degree]? None The end time 𝑡𝑒 s.t. deg{𝑣 |𝑣 ∈ C𝑘[𝑡𝑠 ,𝑡𝑒 ] } is maximized

q4 In what time period will the core grow [most] [rapidly]? None The pair (𝑡𝑒 , 𝑡
′
𝑒 ) s.t.

| C𝑘[𝑡𝑠 ,𝑡 ′𝑒 ]
|− | C𝑘[𝑡𝑠 ,𝑡𝑒 ] |

𝑡 ′𝑒−𝑡𝑒 is maximized

the historical subgraph during a given time interval [𝑡𝑠 , 𝑡𝑒 ], namely,

a set of vertices that induce the maximal subgraph in which 1) each

edge contains a timestamp 𝑡 ∈ [𝑡𝑠 , 𝑡𝑒 ] and 2) each vertex has at least
𝑘 neighbor vertices. By leveraging a precomputed PHC-index, the

PHC-query deals with any historical 𝑘-core query in𝑂 ( |V| · log 𝑡)
time, where |V| is the total number of vertices and 𝑡 is a bounded

parameter that is determined by the specific temporal graph. Thus,

the PHC-query is still costly for temporal graphs with great |V|.
To improve the query efficiency, inspired by the concept of 𝑘-

shell [10] (as illustrated in Figure 1a), we propose a novel index

called Merged Core Time Shell index (MCTS-index). Preliminarily,

we consider each temporal edge as a fact that will not be denied

(namely, removed) over time. Given a start time 𝑡𝑠 , since the core-

ness of a vertex in the historical subgraph of the time interval

[𝑡𝑠 , 𝑡𝑒 ] increases monotonically with the increase of the end time 𝑡𝑒 ,

the earliest end time at which a vertex can have a specific coreness

is called “core time”. We put the vertices with the same core time

for specific 𝑘 and 𝑡𝑠 into a “core time shell”. For example, Figure 1b

illustrates the core time shells in a temporal graph for 𝑘 = 2 and

𝑡𝑠 = 2, which comprise a hierarchical structure. Thus, it is opti-

mal to scan the hierarchical structure to find the vertices with the

core time no later than the given end time 𝑡𝑒 for addressing the

historical 𝑘-core query. Based on that, for each 𝑘 , the MCTS-index

further compresses the hierarchical structures with different 𝑡𝑠 into

a logical graph structure, which still preserves the traversal order

of vertices in the hierarchical structures for each 𝑡𝑠 while avoiding

to keep repeated predecessor-successor relationships between ver-

tices in different hierarchical structures. Due to the discreteness

of vertex core time evolution in real-world temporal graphs, the

MCTS-index reduces the overall space overhead of storing core

time shells significantly, and thereby can scale to large graphs.

Theoretically, theMCTS-index has approximately the same space

complexity as the PHC-index, but allows the nearly optimal query

processing. By introducing another parameter 𝑙 with the upper

bound 3𝑡 , the MCTS-index based query algorithm called MCTS-

query only needs 𝑂 ( |C𝑘[𝑡𝑠 ,𝑡𝑒 ] | · log 𝑙) time to find the result C𝑘[𝑡𝑠 ,𝑡𝑒 ] ,
which is usually a small subset of V . Thus, the MCTS-query ap-

proximates the optimal time complexity 𝑂 ( |C𝑘[𝑡𝑠 ,𝑡𝑒 ] |) by a factor

of log 𝑙 , which varies in the range of [1.56, 8.18] in our empirical

studies on ten real-world temporal graphs listed in Table 3. In prac-

tice, the MCTS-query is guaranteed to be more efficient than the

PHC-query, unless the historical 𝑘-core is almost as large as the

entire graph. Crucially, this advantage on query processing is not

gained at the unreasonable expense of space, because the space

complexity of the MCTS-index is limited to 𝑙/𝑡 (in the emprirical

range of [1.36, 2.48]) times the space complexity of the PHC-index.

Moreover, the MCTS-index can efficiently address the brand-new

“when” historical𝑘-core query with versatile semantics. The current

historical graph queries, such as the 𝑘-core query [34] studied in

this paper, the reachability/connectivity query [25, 33], and the

connected component query [30, 32], intrinsically belong to the

What-Query model. While, for temporal graphs, another query

model orthogonal to the What-Query model, namely, the When-

Query model that focuses on the time instants in which a result

like a path or a subgraph appeared is grossly ignored [21]. For

example, Table 1 shows several examples of the “when” historical

𝑘-core query. Given a start time and a particular condition of the

historical 𝑘-core, the queries aim to find the specific end time at

which the condition can be satisfied. As a unified pipeline to deal

with such queries, we can incrementally maintain the historical

𝑘-core for given 𝑘 and 𝑡𝑠 (namely, traverse the core time shells

in the ascending order of core time iteratively) using the MCTS-

index. When evaluating the condition, we can stop early like the

MCTS-query as long as the condition is monotonic on time.

In summary, we have the following contributions.

1) We propose a new state-of-the-art index approach to address

the emerging historical 𝑘-core query on temporal graphs. The anal-

ysis of the parameterized complexity guarantees that our approach

is more efficient than the existing PHC-query if the number of result

vertices is less than 1/(log𝑡 𝑙 + 1) of the total number of vertices,

which are generally satisfied by real-world queries due to 𝑙 ≤ 3𝑡 .

Meanwhile, our approach requires only 𝑙/𝑡 times as much space

complexity as the PHC-index.

2) At the heart of our index design, a novel concept called “core

time shell” is formulated. Similar to the 𝑘-shells of static graphs,

the core time shells of temporal graphs will facilitate not only the

current “what” historical 𝑘-core query but also the potential “when”

historical 𝑘-core query. To the best of our knowledge, we are the

first to present the formal query model for the “when” historical 𝑘-

core query. Also, we present an algorithm framework that leverages

our index to address a variety of “when” query templates efficiently.

3) To construct the index, we develop an algorithm to obtain it

from the PHC-index without notable space or time overheads. The

algorithm only “moves” the vertices to a new core time shell once

for each of its distinct core time, thereby both avoiding to construct

any core time shell in advance and reducing the construction time.

In addition, we introduce a simple heuristics of ranking the vertices

in core time shells, in order to reduce 𝑙 .
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4) Lastly, we conduct comprehensive experiments on ten real-

world temporal graphs. Compared to the PHC-query, our approach

reduces the response time for the “what” queries with most possible

parameters by a factor of several to tens of thousands, while our

index only expands the space by a factor of 2.16 and spends 0.82%

extra construction time on average. Moreover, we demonstrate the

versatility of our approach with four case studies of the “when”

queries, which reveal interesting insights.

2 PRELIMINARIES
2.1 Problem Definition
The temporal graph we study is an undirected multigraph G =

(V, E), in which each edge (𝑢, 𝑣, 𝑡) ∈ E means there is a connection

between the vertices 𝑢, 𝑣 ∈ V at time 𝑡 ∈ {1, 2, · · · , 𝑡𝑚𝑎𝑥 }. Figure 1
illustrates a toy temporal graph as a running example. The integers

on edges represent the timestamps. There could be parallel edges

with different timestamps between a pair of vertices.

Building upon the above concept, we introduce the projected
graph as a snapshot of the temporal graph. The projected graph

G[𝑡𝑠 ,𝑡𝑒 ] from the start time 𝑡𝑠 until the end time 𝑡𝑒 is defined as the

subgraph of the temporal graph induced by all edges with times-

tamps in the range of [𝑡𝑠 , 𝑡𝑒 ]. For example, given a time interval

[2, 3], the projected graph G[2,3] of our running example is com-

prised of the vertices and edges marked by bold lines in Figure 1b.

Recently, as a fundamental tool of exploring densely connected

subgraphs during the history of temporal graphs, the historical 𝑘-
core query [34] is proposed. It aims to find the 𝑘-core, the maximal

subgraph in which each vertex has degree (namely, the number of

distinct neighbor vertices but not parallel edges) at least𝑘 , emerging

in a specific time period. The formal definition is as follows.

Definition 2.1 (Historical 𝑘-Core Query). For a temporal graph G,
given an integer 𝑘 and a time interval [𝑡𝑠 , 𝑡𝑒 ], the historical 𝑘-core
query returns the set of vertices contained by the 𝑘-core of the

projected graph G[𝑡𝑠 ,𝑡𝑒 ] , which is denoted by C𝑘[𝑡𝑠 ,𝑡𝑒 ] .

For example, the historical 2-core of the time interval [2, 3],
namely, C2[2,3] is comprised of the vertices 𝑣1, 𝑣2, and 𝑣4 marked

by grey color in Figure 1b. In contrast, the static 2-core (which can

be seen as the historical 2-core during [1, 7]) is comprised of the

vertices marked by grey color in Figure 1a.

2.2 State-of-the-art Approach
In order to address the historical 𝑘-core query, the PHC-query [34]

is proposed recently. Specifically, the PHC-query decomposes the

historical 𝑘-core query into |V| sub-queries called historical 𝑘-core
containment queries, each of which is to determinewhether a vertex

𝑢 ∈ V belongs to the result C𝑘[𝑡𝑠 ,𝑡𝑒 ] .
Then, to address a historical𝑘-core containment query efficiently,

the PHC-index is designed based on the following vital concept.

Definition 2.2 (Core Time). For a temporal graph G, given an

integer 𝑘 and a start time 𝑡𝑠 , the core time CT (𝑢, 𝑘, 𝑡𝑠 ) of a vertex
𝑢 ∈ V is the earliest end time 𝑡𝑒 at which the coreness of𝑢 (namely,

the greatest integer 𝑘′ such that 𝑢 belongs to the 𝑘′-core) is no less

than 𝑘 in the projected graph G[𝑡𝑠 ,𝑡𝑒 ] .

Algorithm 1: PHC-query(V , 𝑘 , 𝑡𝑠 , 𝑡𝑒 )

1 C𝑘[𝑡𝑠 ,𝑡𝑒 ] ← ∅ ; //prepare an empty result set

2 forall 𝑢 ∈ V do //traverse each vertex
3 obtain CT(𝑢,𝑘, 𝑡𝑠 ) from the PHC-index by a binary search;

4 if CT(𝑢,𝑘, 𝑡𝑠 ) ≤ 𝑡𝑒 then //check the containment
5 C𝑘[𝑡𝑠 ,𝑡𝑒 ] ← C

𝑘
[𝑡𝑠 ,𝑡𝑒 ] ∪ {𝑢} ; //add the contained vertex

6 return C𝑘[𝑡𝑠 ,𝑡𝑒 ]

Intuitively, for a vertex, each core time represents a “watershed

moment” at which it joins the historical 𝑘-core expanding from a

certain start time. For example, Figure 2a illustrates the evolving

coreness of 𝑣1 for our running example. Each cell in row 𝑡𝑠 and

column 𝑡𝑒 indicates the coreness of 𝑣1 in the projected graph of

[𝑡𝑠 , 𝑡𝑒 ]. We can see that, there are continuous boundaries (denoted

by dotted lines) between the cells with different coreness, which

show the monotonicity of coreness in relation to time. Thus, for pre-

serving the evolving coreness of a given vertex compactly, we only

need to record the coordinates of “landmarks” (namely, the cells

marked by boxes) for each boundary. Consider the red boundary

separating the cells with the coreness 1 and 2. The first “landmark”

(namely, red box) is located at [1, 3], which means the core time

CT (𝑣1, 2, 1) = 3. Since the next red box is located at [3, 6], it can
be inferred that the core time CT (𝑣1, 2, 2) for the start time 𝑡𝑠 = 2

is also 3. Note that, the last red box with an X mark inside means

that, if 𝑘 = 2 and the start time 𝑡𝑠 ≥ 4, the core time of 𝑣1 does not

exist (denoted by∞ in particular).

Based on the above observation, the PHC-index precomputes

and records the landmark time intervals for each vertex and each

reasonable value of 𝑘 , as illustrated in Figure 2b. Then, a historical

𝑘-core containment query can be answered by comparing the re-

trieved/inferred core time CT (𝑢, 𝑘, 𝑡𝑠 ) and the given end time 𝑡𝑒 . If

CT (𝑢, 𝑘, 𝑡𝑠 ) ≤ 𝑡𝑒 , we have 𝑢 ∈ C𝑘[𝑡𝑠 ,𝑡𝑒 ] .
Thus, the PHC-query addresses the historical𝑘-core containment

queries for each vertex and collect the result vertices. Algorithm 1

presents the pseudo code. Its time complexity is 𝑂 ( |V| · log 𝑡),
where 𝑡 is the average number of time intervals in entries of the

PHC-index (which is also the average number of distinct core time

of all vertices). Thus, the PHC-query is normally more efficient

than the traditional core decomposition algorithm [8] with the time

complexity 𝑂 ( |E |), because |E | is at least one order of magnitude

greater than |V| for real-world temporal graphs.

Note that, although the index-free OTCD algorithm [31, 37] can

process a batch of “temporal 𝑘-core queries” within a specific time

range more efficiently than the PHC-query by effectively reducing

the redundant computation, the PHC-query is still the state-of-the-

art index-based approach for processing an individual historical

𝑘-core query.

3 INDEX STRUCTURE & QUERY PROCESSING
Since the time complexity of the PHC-query is linear to the total

number of vertices |V| in the entire graph, it may result in low

query efficiency on large-scale graphs. For real-world historical

𝑘-core queries such as finding influential users or fraud groups, the

result set of vertices is often significantly smaller thanV , especially
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(a) The coreness of vertex v1 in each time interval.(b) PHC-Index for k = 2.

(c) PHC-Index unfolded on start time. (d) A core time shell for start time ts = 2. (e) CTS-Index for k = 2.

sort vertices by core time for each ts pair core time and vertex in each row

Figure 2: A chain-of-thought demonstrating the design of the CTS-index.

when 𝑘 is relatively large or the time span (𝑡𝑒 − 𝑡𝑠 ) is short. This is
highly reasonable, because with the increase of 𝑘 or the decrease

of (𝑡𝑒 − 𝑡𝑠 ), the number of vertices satisfying the 𝑘-core condition

decreases rapidly in the sparse real-world temporal graphs.

In this section, we design index structures to improve the effi-

ciency of historical 𝑘-core query processing. Firstly, we present an

intermediate Core Time Shell index that provides the optimal query

performance at the expense of high space complexity in Sections 3.1.

Then, we present a space-time balanced Merged Core Time Shell

index in Section 3.2. Lastly, we compare the complexities of the

PHC, CTS, and MCTS indexes in Section 3.3.

3.1 Core Time Shell Index
Inspired by the concept of 𝑘-shell [10], we propose a new Core

Time Shell index (CTS-index) that enhances the existing PHC-index

to achieve the optimal query performance.

3.1.1 Structure. In the domain of network analysis, the 𝑘-shell
derived from the 𝑘-core is a pivotal concept for uncovering the

hierarchical organization of vertices. A vertex belongs to the 𝑘-

shell if and only if it is in the 𝑘-core but not in the (𝑘 + 1)-core,
namely, its coreness is exactly 𝑘 . For an entire graph, the vertices

are assigned to non-overlapping shells with different values of 𝑘 .

Consequently, the𝑘-shell structure consisting of all𝑘-shells ordered

by 𝑘 can solve a 𝑘-core query in the optimal 𝑂 ( |C𝑘 |) time, where

C𝑘 is the vertex set of the 𝑘-core. Figure 1a illustrates an example

of the 𝑘-shell structure.

Actually, the PHC-index applies a particular (𝑘,𝑢, 𝑡𝑐 )-shell that
preserves a set of start time {𝑡𝑠 } with CT (𝑢, 𝑘, 𝑡𝑠 ) = 𝑡𝑐 but not

vertices. Figure 2a illustrates the distribution of the coreness of the

vertex 𝑣1 in the projected graphs of all time intervals. Given 𝑘 = 2,

for each distinct core time of 𝑣1 (namely, 𝑡𝑒 in red color) like 3, there

is a (2, 𝑣1, 3)-shell {1, 2}. The PHC-index compresses each (𝑘,𝑢, 𝑡𝑐 )-
shell by only recording the earliest start time (namely, 𝑡𝑠 in red

color), because the timestamps in the (𝑘,𝑢, 𝑡𝑐 )-shell are continuous.
As illustrated in Figure 2b, each entry of the PHC-index is a list of

compressed (𝑘,𝑢, 𝑡𝑐 )-shells for each distinct 𝑡𝑐 .

It naturally raises an interesting question: can we design another

kind of shell that still preserves vertices to address historical 𝑘-core

queries, so that we do not have to traverse all vertices for each query

like the PHC-index? The answer is yes. Conceptually, we can fulfill

that by swapping the dimensions of 𝑢 and 𝑡𝑠 in the (𝑘,𝑢, 𝑡𝑐 )-shell
by two steps. Firstly, we unfold the PHC-index in the compressed 𝑡𝑠
dimension, as illustrated in Figure 2c. Then, we sort the vertices by

their core time for each start time 𝑡𝑠 independently, as illustrated

in Figure 2d. The result of each sort is a hierarchical structure of

vertices, in which each layer (marked by different colors) refers to

a distinct core time of these vertices for corresponding 𝑘 and 𝑡𝑠 . For

example, the red layer has three vertices 𝑣1, 𝑣2, and 𝑣4, and only

they have the core time 𝑡𝑐 = 3 for 𝑘 = 2 and 𝑡𝑠 = 2.

Consequently, we have a new (𝑘, 𝑡𝑠 , 𝑡𝑐 )-shell called core time

shell. It is formally defined as follows.

Definition 3.1 (Core Time Shell). For a temporal graph G, given
an integer 𝑘 , a start time 𝑡𝑠 , and any time 𝑡𝑐 ≥ 𝑡𝑠 , the core time

1338



Algorithm 2: CTS-query(𝑘 , 𝑡𝑠 , 𝑡𝑒 )
1 C𝑘[𝑡𝑠 ,𝑡𝑒 ] ← ∅ ; //prepare an empty result set

2 forall (𝑘, 𝑡𝑠 , 𝑡𝑐 )-shell in the retrieved (𝑘, 𝑡𝑠 )-structure do
3 if 𝑡𝑐 > 𝑡𝑒 then //the core time of the next shell is too late
4 break ; //stop early

5 else
6 forall vertex 𝑢 in the (𝑘, 𝑡𝑠 , 𝑡𝑐 )-shell do
7 C𝑘[𝑡𝑠 ,𝑡𝑒 ] ← C

𝑘
[𝑡𝑠 ,𝑡𝑒 ] ∪ {𝑢} ; //add vertices in the shell

8 return C𝑘[𝑡𝑠 ,𝑡𝑒 ] ;

shell denoted by (𝑘, 𝑡𝑠 , 𝑡𝑐 )-shell is a set of vertices𝑉 ⊆ V such that

a vertex 𝑢 ∈ 𝑉 if and only if CT (𝑢, 𝑘, 𝑡𝑠 ) = 𝑡𝑐 .

The hierarchical structure consisting of core time shells ordered

by the core time reveal in which time or order the vertices join the

historical 𝑘-core since 𝑡𝑠 . Figure 1b illustrates the core time shells

with 𝑘 = 2 and 𝑡𝑠 = 2 for our running example. The four shells

correspond to the four layers in Figure 2d color by color.

In order to store and retrieve the hierarchical structures, we

propose the Core Time Shell index (CTS-index) as follows.

Definition 3.2 (Core Time Shell Index). For a temporal graph G,
the CTS-index is comprised of entries for each combination of

𝑘 ∈ [2, 𝑘𝑚𝑎𝑥 ] and 𝑡𝑠 ∈ [1, 𝑡𝑚𝑎𝑥 ], which are denoted by (𝑘, 𝑡𝑠 )-
structures. Each (𝑘, 𝑡𝑠 )-structure is a core time shell list containing

all nonempty (𝑘, 𝑡𝑠 , 𝑡𝑐 )-shells in the ascending order of 𝑡𝑐 .

For example, Figure 2e illustrates the (𝑘, 𝑡𝑠 )-structures with𝑘 = 2

and 𝑡𝑠 = 1, 2, · · · , 7 in the CTS-index as a table, in which each

column represents a (𝑘, 𝑡𝑠 )-structure. The (2,1)-structure in the first

column has three core time shells: (2,1,3), (2,1,6), and (2,1,7)-shells

distinguished by different colors. For ease of understanding, we

record a two-tuple with both core time and vertex in each cell,

though we only need to record a core time for an entire core time

shell. Note that, for vertices like 𝑣8 and 𝑣9 that are not in the 2-core

of G[2,𝑡𝑚𝑎𝑥 ] (whose core time is denoted by∞), they will not appear
in any core time shell of the (2, 2)-structure.

3.1.2 Query Processing. Algorithm 2 presents the pseudo code of

the CTS-query, which uses the CTS-index to address the histori-

cal 𝑘-core query. Given 𝑘 and [𝑡𝑠 , 𝑡𝑒 ], the CTS-query retrieves the

(𝑘, 𝑡𝑠 )-structure from the CTS-index and then traverses the nested

(𝑘, 𝑡𝑠 , 𝑡𝑐 )-shells in the ascending order of 𝑡𝑐 (lines 2-7). As long as

𝑡𝑐 ≤ 𝑡𝑒 , the vertices in the traversed (𝑘, 𝑡𝑠 , 𝑡𝑐 )-shells are added into

the result (lines 6-7). Otherwise, the traversal is terminated imme-

diately (lines 3-4). The correctness of the CTS-query is guaranteed

by the definition of core time (Definition 2.2).

For example, given 𝑘 = 2 and [𝑡𝑠 , 𝑡𝑒 ] = [2, 5], we will traverse
the vertices 𝑣1, 𝑣2, 𝑣4, and 𝑣3 sequentially until the core time of next

shell is greater than 5, as illustrated in Figure 2d.

3.1.3 Complexity. Let us consider the time complexity of the CTS-

query firstly.

Theorem 3.1. The CTS-query can solve the historical 𝑘-core query
with the time complexity 𝑂 ( |C𝑘[𝑡𝑠 ,𝑡𝑒 ] |), where |C

𝑘
[𝑡𝑠 ,𝑡𝑒 ] | is the size

(namely, the number of vertices) of the result historical 𝑘-core.

Proof. The CTS-query is simply traversing the vertices in the

(𝑘, 𝑡𝑠 )-structure. Due to the order of traversal, it will not meet any

vertex not in the result until termination. □

Then, let us consider the space complexity of the CTS-index.

Theorem 3.2. The space complexity of the CTS-index is bounded
by 𝑂 (𝑘𝑚𝑎𝑥 · |V| · 𝑡𝑚𝑎𝑥 ), where |V| is the number of vertices, 𝑘𝑚𝑎𝑥

is the maximum coreness, and 𝑡𝑚𝑎𝑥 is the maximum timestamp.

Proof. According to Definition 3.2, for each 𝑘 ∈ [2, 𝑘𝑚𝑎𝑥 ] and
each 𝑡𝑠 ∈ [1, 𝑡𝑚𝑎𝑥 ], a (𝑘, 𝑡𝑠 )-structure is stored, so that there are

𝑘𝑚𝑎𝑥 · 𝑡𝑚𝑎𝑥 (𝑘, 𝑡𝑠 )-structures. Within each (𝑘, 𝑡𝑠 )-structure, there
are a number of (𝑘, 𝑡𝑠 , 𝑡𝑐 )-shells. Since a vertex has only one or

none core time for given 𝑘 and 𝑡𝑠 , it is contained by at most one

(𝑘, 𝑡𝑠 , 𝑡𝑐 )-shell. Thus, the space complexity of a (𝑘, 𝑡𝑠 )-structure is
bounded by𝑂 ( |V|). Consequently, the overall space complexity of

the CTS-index is bounded by 𝑂 (𝑘𝑚𝑎𝑥 · |V| · 𝑡𝑚𝑎𝑥 ). □

In summary, the CTS-query achieves the theoretically optimal

time complexity, and however the CTS-index has a step back from

the PHC-index in terms of space complexity because the CTS-index

abandons the compression used by the PHC-index.

3.2 Merged Core Time Shell Index
As the CTS-index is too costly for large-scale temporal graphs with

massive vertices and timestamps, we propose the Merged Core

Time Shell index (MCTS-index) that improves the CTS-index to

achieve a better balance between query time and index space.

3.2.1 Structure. As indicated by its name, the main idea of the

MCTS-index is to merge the (𝑘, 𝑡𝑠 )-structures with different 𝑡𝑠 for

each 𝑘 , thereby reducing the space overhead. Since each (𝑘, 𝑡𝑠 )-
structure can be seen as a specific sequence of identical vertices, we

can merge the sequences incrementally by delta-encoding, which

preserves a new sequence as only a number of “edits” on the previ-

ously merged result.

Specifically, given 𝑘 , the merging procedure of (𝑘, 𝑡𝑠 )-structures
has the following two steps.

Step 1: representation. We represent each (𝑘, 𝑡𝑠 )-structure as a
directed link-labeled path denoted by 𝑃𝑘,𝑡𝑠 , on which there is

a node for each vertex in the (𝑘, 𝑡𝑠 )-structure. In addition, a path

always has a start node and an end node denoted by 𝑆 and 𝐸 respec-

tively. Then, different from the edges in the temporal graph, the

directed links on the path 𝑃𝑘,𝑡𝑠 indicate the predecessor-successor

relationships between nodes in the corresponding (𝑘, 𝑡𝑠 )-structure,
so that the order of traversing nodes from 𝑆 to 𝐸 along the path 𝑃𝑘,𝑡𝑠
is the same as that of traversing the vertices in the (𝑘, 𝑡𝑠 )-structure
sequentially. The label of link is a two-tuple (𝑡𝑠 , 𝑡𝑐 ), which means

the successive vertex has the core time 𝑡𝑐 for the start time 𝑡𝑠 and

𝑘 . Thus, we denote by (𝑛, 𝑛′, 𝑡𝑠 , 𝑡𝑐 ) a directed link on the path with

𝑛, 𝑛′ ∈ {𝑆, 𝐸} ∪ V .

Step 2: merging. We merge the paths 𝑃𝑘,𝑡𝑠 into a single merged
graph for specific 𝑘 in the ascending order of 𝑡𝑠 ∈ {1, 2, · · · , 𝑡𝑚𝑎𝑥 }.
The simplest merge function is to add all links on a path into the

merged graph. However, the space complexity of such a merged

graph is the same as that of the CTS-index. Thus, a merge function

should add a link into the merged graph only if it is necessary,

namely, the merged graph can still preserve the traversal order and
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(a) The logical procedure of constructing MCTS(2).
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B2(v1)

ts 1 3
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...

MCTS(2)

(b) The physical structure of constructed MCTS(2).

Figure 3: An example of the MCTS-index with 𝑘 = 2.

the core time of vertices on each path without this link. For that,

we propose a merge function that adds a link (𝑛, 𝑛′, 𝑡𝑠 , 𝑡𝑐 ) if 1) 𝑛
and 𝑛′ do not have the predecessor-successor relationship in the

previous path 𝑃𝑘,𝑡𝑠−1, or 2) they do have but the core time of 𝑛′

in 𝑃𝑘,𝑡𝑠−1 is earlier than 𝑡𝑐 . Consequently, only a few links will be

added if the (𝑘, 𝑡𝑠 )-structure is similar to the (𝑘, 𝑡𝑠 − 1)-structure.
The details of the proposed merge function are given in Algo-

rithm 3. We denote by 𝑁𝑘 and 𝐿𝑘 the node set and link set of the

merged graph for specific 𝑘 respectively. Firstly, we add all nodes

as well as links in 𝑃𝑘,1 to 𝑁𝑘 (lines 1-2), since it can be proved that

the vertices in any (𝑘, 𝑡𝑠 )-structure are surely contained by the

(𝑘, 1)-structure. Then, we traverse the links in each path 𝑃𝑘,𝑡𝑠 with

𝑡𝑠 > 1 (lines 4-13). For each link (𝑛, 𝑛′, 𝑡𝑠 , 𝑡𝑐 ), we determine whether

to add it to 𝐿𝑘 with respect to certain conditions (lines 7-12), so

that the order and core time of vertices in any (𝑘, 𝑡𝑠 )-structure can
be preserved.

Lemma 3.1. In the merged graph for specific 𝑘 , given a start time

𝑡𝑠 , for any node 𝑛 in the path 𝑃𝑘,𝑡𝑠 except the last one 𝐸, its outgoing

link (𝑛, 𝑛′, 𝑡 ′𝑠 , 𝑡𝑐 ) ∈ 𝐿𝑘 with the maximum 𝑡 ′𝑠 ≤ 𝑡𝑠 reaches another

node 𝑛′ (called the latest successor of 𝑛) that is the successor of 𝑛 in

the path 𝑃𝑘,𝑡𝑠 , and we have CT (𝑛′, 𝑘, 𝑡𝑠 ) = 𝑡𝑐 .

Proof. Given 𝑛 and 𝑡𝑠 , there are two cases, namely, 𝑡 ′𝑠 = 𝑡𝑠 and

𝑡 ′𝑠 < 𝑡𝑠 for the link (𝑛, 𝑛′, 𝑡 ′𝑠 , 𝑡𝑐 ) ∈ 𝐿𝑘 with the maximum 𝑡 ′𝑠 ≤ 𝑡𝑠 . We

will discuss both cases. If 𝑡 ′𝑠 = 𝑡𝑠 , this link is added from the path

Algorithm 3: Path-Merge(𝑁𝑘 , 𝐿𝑘 , 𝑃𝑘,𝑡𝑠 )

1 if 𝑡𝑠 = 1 then //the first path is preserved completely
2 add all nodes and links in 𝑃𝑘,𝑡𝑠 to 𝑁𝑘 and 𝐿𝑘 respectively;

3 else //the other paths are preserved incrementally
4 𝑛 ← 𝑆 ; //start the traversal in the path
5 while 𝑛 ≠ 𝐸 do
6 (𝑛,𝑛′, 𝑡𝑠 , 𝑡𝑐 ) ← the link outgoing from 𝑛 in 𝑃𝑘,𝑡𝑠 ; //get

the successor of 𝑛 in the path
7 (𝑛,𝑛′′, 𝑡 ′𝑠 , 𝑡 ′𝑐 ) ← the link outgoing from 𝑛 in 𝐿𝑘 with the

greatest 𝑡 ′𝑠 ; //get the latest successor of 𝑛 in the merged
graph

8 if 𝑛′′ ≠ 𝑛′ then //the successors are different
9 add (𝑛,𝑛′, 𝑡𝑠 , 𝑡𝑐 ) to 𝐿𝑘 ; //record the change

10 else
11 if 𝑡 ′𝑐 < 𝑡𝑐 then //the core time is different
12 add (𝑛,𝑛′, 𝑡𝑠 , 𝑡𝑐 ) to 𝐿𝑘 ; //record the change

13 𝑛 ← 𝑛′ ; //traverse the next node in the path

14 return 𝑁𝑘 , 𝐿𝑘 ;

𝑃𝑘,𝑡𝑠 , so that 𝑛
′
must be the successor of 𝑛 and the core time of 𝑛′ is

certainly 𝑡𝑐 in 𝑃𝑘,𝑡𝑠 . If 𝑡
′
𝑠 < 𝑡𝑠 , we can prove this by induction. For

𝑡 ′′𝑠 = 𝑡 ′𝑠+1, the link (𝑛, 𝑛′′, 𝑡 ′′𝑠 , 𝑡 ′𝑐 ) outgoing from𝑛 in the path 𝑃𝑘,𝑡 ′′𝑠 is

not added to the merged graph only because the successor 𝑛′′ = 𝑛′

and its core time 𝑡 ′𝑐 = 𝑡𝑐 according to Algorithm 3. Consequently,

the conclusion also holds for any other 𝑡 ′′𝑠 ∈ (𝑡 ′𝑠 + 1, 𝑡𝑠 ]. □

For example, Figure 3a illustrates the procedure of constructing

the merged graph for the running example temporal graph with

𝑘 = 2. Each row is the merged graph after gradually merging the

path 𝑃2,𝑡𝑠 with 𝑡𝑠 = 1, 2, 3, 4, and 5 (namely, the corresponding

column in Figure 2e). The links marked by red color are newly

added from the corresponding path. In 𝑃2,2, the vertex following

the vertex 𝑣2 is 𝑣4 with the core time 3 but not 𝑣3, so that a new

link (𝑣2, 𝑣4, 2, 3) is added into the merged graph in the second row.

Moreover, in 𝑃2,3, the vertex 𝑣2 is followed by the vertex 𝑣3 with

the core time 7, so that a new link (𝑣2, 𝑣3, 3, 7) is added into the

merged graph in the third row though there already exists a link

(𝑣2, 𝑣3, 1, 3). Lastly, since 𝑃2,5 is empty, a new link (𝑆, 𝐸, 5,∞) is
added into the merged graph in the fifth row in order to declare

that there is no historical 2-core if the start time 𝑡𝑠 ≥ 5. By statistics,

the final merged graph has 19 links, and in contrast, the original

paths have 32 links in total.

Note that, the compression ratio of the merged graph depends on

how discretely the core time of vertices evolves with the increasing

start time. The more discretely the core time evolves, the more

similar the (𝑘, 𝑡𝑠 )-structure and the (𝑘, 𝑡𝑠 + 1)-structure are, and the
better the compression ratio is.

Then, we formally define the MCTS-index as follows.

Definition 3.3 (Merged Core Time Shell Index). For a temporal

graph G, the MCTS-index is composed of graph structures for each

possible 𝑘 , which are denoted by MCTS(𝑘). For each MCTS(𝑘) =
(𝑁𝑘 , 𝐿𝑘 ), the set 𝑁𝑘 is the union of nodes on the paths 𝑃𝑘,𝑡𝑠 with

𝑡𝑠 = 1, 2, · · · , 𝑡𝑚𝑎𝑥 , and the set 𝐿𝑘 = {(𝑛, 𝑛′, 𝑡𝑠 , 𝑡𝑐 )} with 𝑛, 𝑛′ ∈ 𝑁𝑘
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Algorithm 4:MCTS-query(𝑘 , 𝑡𝑠 , 𝑡𝑒 )

1 C𝑘[𝑡𝑠 ,𝑡𝑒 ] ← ∅, 𝑛 ← 𝑆 ; //initialization and start from 𝑆

2 while 𝑛 ≠ 𝐸 do //traverse vertices until reaching the end node
3 obtain 𝐴𝑡𝑠 , 𝐴𝑡𝑐 , and 𝐴𝑛 from 𝐵𝑘 (𝑛) in MCTS(𝑘);

4 𝑖 ← argmax

𝑖

{𝐴𝑡𝑠 [𝑖 ] |𝐴𝑡𝑠 [𝑖 ] ≤ 𝑡𝑠 } ; //get the latest successor

5 if 𝐴𝑡𝑐 [𝑖 ] ≤ 𝑡𝑒 then //check the core time
6 C𝑘[𝑡𝑠 ,𝑡𝑒 ] ← C

𝑘
[𝑡𝑠 ,𝑡𝑒 ] ∪ {𝐴𝑛 [𝑖 ] } ; //add the vertex

7 𝑛 ← 𝐴𝑛 [𝑖 ] ; //jump to the latest successor

8 else //the core time of the next shell is too late
9 break ; //stop early

10 return C𝑘[𝑡𝑠 ,𝑡𝑒 ] ;

is a subset of all links on the paths such that we can restore the

(𝑘, 𝑡𝑠 )-structure for any 𝑡𝑠 from the merged graph MCTS(𝑘).

Lastly, we physically store the MCTS-index in a compact and

query-friendly format, as illustrated in Figure 3b. Each MCTS(𝑘) is

stored as an adjacency list that represents its merged graph. Specif-

ically, each node 𝑛 is stored as a block 𝐵𝑘 (𝑛) that contains three
arrays 𝐴𝑡𝑠 , 𝐴𝑡𝑐 , and 𝐴𝑛 of the same length, which record 𝑡𝑠 , 𝑡𝑐 , and

the pointer to the block 𝐵𝑘 (𝑛′) for its outgoing links {(𝑛, 𝑛′, 𝑡𝑠 , 𝑡𝑐 )}
respectively. All arrays are sorted in the ascending order of the

corresponding 𝑡𝑠 , so that MCTS(𝑘) supports the retrieval of the

latest successor efficiently. Given 𝑡𝑠 , we perform a binary search in

𝐴𝑡𝑠 to find the maximum start time less than 𝑡𝑠 . Then, we use the

index of the returned start time in𝐴𝑡𝑠 to get the corresponding core

time and successor node in the other two arrays respectively. The

pointers to the blocks of start nodes of each MCTS(𝑘) are stored in

a lookup table, which serves as the entrance of the MCTS-index.

3.2.2 Query Processing. We propose a query processing algorithm

called MCTS-query based on the MCTS-index. It directly search

the merged graph and does not need to restore the (𝑘, 𝑡𝑠 )-structure
from the MCTS-index.

Algorithm 4 presents the pseudo code of the MCTS-query. Given

an integer 𝑘 and a time interval [𝑡𝑠 , 𝑡𝑒 ] as inputs, we traverse the

nodes in the merged graph of MCTS(𝑘) from the node 𝑆 to return

C𝑘[𝑡𝑠 ,𝑡𝑒 ] . For each traversed node, we choose its latest successor as

the next node (lines 3-7), until the core time of the latest successor

is later than the given end time 𝑡𝑒 (lines 8-9). The result set C𝑘[𝑡𝑠 ,𝑡𝑒 ]
is comprised of all traversed vertices.

The correctness of the MCTS-query is obvious. Since it traverses

the vertices along the links to the latest successor, the order of

traversal is the same as that of traversing the corresponding (𝑘, 𝑡𝑠 )-
structure according to Lemma 3.1. Meanwhile, it also stops if the

core time of the next vertex is greater than the given end time. Thus,

it finds the same result as the CTS-query.

For example, given 𝑘 = 2 and [𝑡𝑠 , 𝑡𝑒 ] = [2, 3], we use the MCTS-

query to address the historical 𝑘-core query on the merged graph

of MCTS(2) illustrated in Figure 3a. For the initial node 𝑆 , there are

four links: (𝑆, 𝑣1, 1, 3), (𝑆, 𝑣1, 3, 6), (𝑆, 𝑣2, 4, 7), and (𝑆, 𝐸, 5,∞). Thus,
we traverse along (𝑆, 𝑣1, 1, 3) because its start time 1 is themaximum

time no later than 2 and its core time 3 is no later than 3, and 𝑣1 is

added into the result set. For the next node 𝑣1, there are two links:

(𝑣1, 𝑣2, 1, 3) and (𝑣1, 𝑣5, 3, 6). Thus, we traverse along (𝑣1, 𝑣2, 1, 3) to

𝑣2. Similarly, we will further traverse along (𝑣2, 𝑣4, 2, 3) to 𝑣4. Then,
the next link (𝑣4, 𝑣3, 2, 4) to the latest successor is not qualified

because its core time 4 is later than 3, and thereby the traversal is

terminated immediately. The final result set is comprised of 𝑣1, 𝑣2,

and 𝑣4, which can be verified in both Figure 1b and Figure 2e.

3.2.3 Complexity. Firstly, let us consider the space complexity of

the MCTS-index. Since each MCTS(𝑘) is a graph structure, we can

obtain its space complexity by counting its links.

Theorem 3.3. By introducing a parameter 𝑙 that denotes the av-
erage number of links outgoing from a node in MCTS(𝑘) for 𝑘 ∈
[2, 𝑘𝑚𝑎𝑥 ], the space complexity of the MCTS-index is bouned by
𝑂 (𝑘𝑚𝑎𝑥 · |V| · 𝑙).

Proof. Obviously, there are 𝑘𝑚𝑎𝑥 − 1 merged graphs, each of

which has at most |V| + 1 nodes with 𝑙 links. □

More importantly, the correlation of 𝑙 and 𝑡 , which denotes the

average number of distinct core time of a vertex for 𝑘 ∈ [2, 𝑘𝑚𝑎𝑥 ],
can be established, so that the complexities of the MCTS-index and

the PHC-index are comparable.

Theorem 3.4. Given a global order to rank vertices in any core
time shell, we have 𝑙 ≤ 3𝑡 if the merge function is Algorithm 3.

Proof. Given a global order like the ascending vertex id, the

positions of vertices in each core time shell are fixed. Thus, for the

merged graph that has merged the paths {𝑃𝑘,𝑡𝑠 } with 𝑡𝑠 ∈ [1, 𝑡 − 1],
a link (𝑛, 𝑛′, 𝑡, 𝑡𝑐 ) in the path 𝑃𝑘,𝑡 will be added into the merged

graph only if 1) the core time of 𝑛 for the start time 𝑡 is increased

(namely, 𝑛 comes from another core time shell), 2) the core time of

𝑛′ for the start time 𝑡 is increased, (namely, 𝑛′ comes from another

core time shell) or 3) the core time of the nodes between 𝑛 and 𝑛′ in
the path 𝑃𝑘,𝑡−1 but not 𝑛 and 𝑛′ themselves is increased (namely, 𝑛

and 𝑛′ are still in their old core time shells but the nodes that used

to be between them are gone). Thus, when merging a path 𝑃𝑘,𝑡𝑠 , we

only add the links that satisfy at least one of the three conditions.

Conversely, for each vertex whose core time is increased to a new

distinct timestamp, we have at most one new link that can satisfy

each condition. Consequently, the (average) number of links is at

most three times the (average) number of distinct core time. □

Moreover, the time complexity of the MCTS-query (Algorithm 4)

can be estimated as follows.

Theorem 3.5. The MCTS-query can solve the historical 𝑘-core
query with the time complexity 𝑂 ( |C𝑘[𝑡𝑠 ,𝑡𝑒 ] | · log 𝑙).

Proof. For a historical 𝑘-core query of [𝑡𝑠 , 𝑡𝑒 ], the MCTS-query

will only traverse the vertices in the result C𝑘[𝑡𝑠 ,𝑡𝑒 ] like the CTS-
query. Moreover, different from the CTS-query, the MCTS-query

needs to find the latest successor by a binary search in the start

time array 𝐴𝑡𝑠 , whose length is 𝑙 on average. Thus, the overall time

complexity is 𝑂 ( |C𝑘[𝑡𝑠 ,𝑡𝑒 ] | · log 𝑙). □

Note that, log 𝑙 can be seen as the approximation ratio of the time

complexity of the MCTS-query to the optimal complexity, which

varies in the range of [1.56, 8.18] in our empirical studies.
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Table 2: Comparison of complexities.

index space query time

PHC 𝑂 (𝑘𝑚𝑎𝑥 · |V| · 𝑡) 𝑂 ( |V| · log 𝑡)
MCTS 𝑂 (𝑘𝑚𝑎𝑥 · |V| · 𝑙) 𝑂 ( |C𝑘[𝑡𝑠 ,𝑡𝑒 ] | · log 𝑙)
CTS 𝑂 (𝑘𝑚𝑎𝑥 · |V| · 𝑡𝑚𝑎𝑥 ) 𝑂 ( |C𝑘[𝑡𝑠 ,𝑡𝑒 ] |)

3.3 Comparison of PHC, CTS, and MCTS
Table 2 shows the parameterized complexities of all three indexes.

For real-world data and queries, we generally have 𝑙 ≃ 𝑡 ≪ 𝑡𝑚𝑎𝑥

and |C𝑘[𝑡𝑠 ,𝑡𝑒 ] | ≪ |V| (see the experimental results in Section 6).

3.3.1 Index Space. In terms of space complexity, the MCTS-index

and the PHC-index are about the same, and both effectively com-

press the CTS-index in different ways. The CTS-index could be

too costly on large-scale temporal graphs with great |V| and 𝑡𝑚𝑎𝑥

(note that, 𝑘𝑚𝑎𝑥 is relatively very small on the sparse real-world

graphs). In contrast, the MCTS-index requires only 𝑙/𝑡 (at most

three) times as much index space as the PHC-index.

3.3.2 Query Time. For querying the historical 𝑘-core, the CTS-

query is the most efficient, the MCTS-query is almost as efficient

as the CTS-query, and the PHC-query is generally slower than

them. The CTS-query can achieve the theoretically optimal time

complexity, while the MCTS-query trades off limited performance

for much less space. In contrast, the PHC-query needs to traverse

all vertices no matter how small the result is.

In summary, the MCTS-index achieves a theoretically excellent

balance between space overheads and query performance for deal-

ing with historical 𝑘-core queries.

4 INDEX CONSTRUCTION
4.1 Naive Algorithm
Straightforwardly, we can obtain the MCTS-index from the con-

structed CTS-index. For each 𝑘 , we construct MCTS(𝑘) by merging

the (𝑘, 𝑡𝑠 )-structures with 𝑡𝑠 = 1, 2, · · · , 𝑡𝑚𝑎𝑥 gradually. The details

of merge function have been introduced in Section 3.2.

However, due to the high space overheads of the CTS-index,

it is impractical to construct the MCTS-index on top of that for

large-scale temporal graphs. As discussed in Section 3.3, the space

complexity of the PHC-index is much lower than that of the CTS-

index. This naturally raises the idea of obtaining the MCTS-index

directly from the constructed PHC-index, thereby avoiding to con-

struct the core time shells in advance.

4.2 Vertex Moving Algorithm
We develop an advanced construction algorithm for the MCTS-

index, which directly obtain it from the space-efficient PHC-index.

For each 𝑘 , we still merge the (𝑘, 𝑡𝑠 )-structures into the merged

graph MCTS(𝑘) in the ascending order of 𝑡𝑠 . However, due to

the absence of the CTS-index, the (𝑘, 𝑡𝑠 )-structures are unknown.
Thus, we obtain each (𝑘, 𝑡𝑠 )-structure from the previous (𝑘, 𝑡𝑠 − 1)-
structure incrementally by “vertex movement”. Specifically, we

firstly retrieve the vertices whose core time 𝑡𝑐 for the start time 𝑡𝑠
is increased (with respect to that for 𝑡𝑠 − 1) from the PHC-index,

and then we move each vertex to the core time shell corresponding

to its new core time 𝑡𝑐 . For example, to obtain the (2, 2)-structure
from the (2, 1)-structure in Figure 2e, it is needed to move 𝑣3 to the

(2, 2, 4)-shell, because the core time of 𝑣3 for 𝑡𝑠 = 2 is increased to

4 from 3.

Moreover, we propose an optimization method that can effec-

tively reduce the overheads of merging the (𝑘, 𝑡𝑠 )-structures. Since
a vertex movement will only change the predecessors and succes-

sors of a few of vertices in a temporary (𝑘, 𝑡𝑠 )-structure, we only
need to add and remove links for each vertex movement to pre-

serve the vertex traversal order for the (𝑘, 𝑡𝑠 )-structure, instead of

traversing all links in its path 𝑃𝑘,𝑡𝑠 as in Algorithm 3.

The addition of links is based on the following observation.

Lemma 4.1. After moving a vertex into a new core time shell, it

requires at most three new links to preserve the new predecessor-

successor relationships in the merged graph.

Proof. Assume the vertex 𝑢 has been moved into the (𝑘, 𝑡𝑠 , 𝑡𝑐 )-
shell. There are possibly three new predecessor-successor relation-

ships. 1) For the old latest predecessor 𝑛 and the old latest successor

𝑛′ of 𝑢, we add a link (𝑛, 𝑛′, 𝑡𝑠 , CT (𝑣 ′, 𝑘, 𝑡𝑠 − 1)) to connect them.

2) For the new latest predecessor 𝑛 of 𝑢, we add a link (𝑛,𝑢, 𝑡𝑠 , 𝑡𝑐 )
to connect it and 𝑢. 3) For the new latest successor 𝑛 of 𝑢, we add a

link (𝑢, 𝑛, 𝑡𝑠 , CT (𝑛, 𝑘, 𝑡𝑠 − 1)) to connect it and 𝑢. In particular, if

𝑡𝑐 = ∞ (namely, 𝑢 has no core time for 𝑡𝑠 ), only one link is needed

for the case 1), or if the old and new latest predecessors of 𝑢 are the

same node, only one link is needed for the case 2). □

Meanwhile, for each newly added link (𝑛, 𝑛′, 𝑡𝑠 , 𝑡𝑐 ), we need to

check whether there exists another link from 𝑛 with the same 𝑡𝑠 but

different 𝑛′ or 𝑡𝑐 . If so, the old link has to be removed, because the

latest successor of 𝑛 has changed. Consequently, it is maintained a

unique vertex traversal order for any given start time.

Algorithm 5 outlines the procedure of construction. We have

two further explanations on this algorithm. 1) In order to retrieve

the vertices with the increased core time for given 𝑡𝑠 , we can eas-

ily reorganize the PHC-index to fulfill that in 𝑂 (1) time. 2) When

moving a vertex, we heuristically move it to the last position of

the destined core time shell, though any position is actually fea-

sible. Interestingly, compared to maintaining a global order, we

observed that the heuristics can leverage the correlations of core

time between vertices to reduce the total number of links in the

final merged graph.

For example, Figure 4 illustrates the procedure of updating the

merged graph ofMCTS(2) as 𝑡𝑠 is increased to 3. For eachmovement,

the red solid lines are newly added links and the red dashed lines

are newly removed links. Firstly, 𝑣1 is moved to the last position

of the (3, 6)-shell. Thus, we add three links (𝑆, 𝑣2, 3, 3), (𝑣6, 𝑣1, 3, 6),
and (𝑣1, 𝑣7, 3, 7) to the merged graph with respect to the three cases

in the proof of Lemma 4.1 respectively. Then, 𝑣2 is moved to the

last position of the (3, 7)-shell. We also add three links (𝑆, 𝑣4, 3, 3),
(𝑣7, 𝑣2, 3, 7), and (𝑣2, 𝐸, 3,∞). Moreover, the previous link (𝑆, 𝑣2, 3, 3)
is removed because it is replaced by (𝑆, 𝑣4, 3, 3). Finally, after all four
vertices with increased core time have been moved, we search the

merged graph from 𝑆 by traversing the latest successor node, and

will obtain the (2, 3)-structure {{𝑣5, 𝑣6, 𝑣1}, {𝑣7, 𝑣2, 𝑣4, 𝑣3}}, which
is obviously correct.
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Algorithm 5:MCTS-Construct(the PHC-index)

1 for 𝑘 ← 2 to 𝑘𝑚𝑎𝑥 do //start the construction of MCTS (𝑘 )
2 retrieve the core time of all vertices for 𝑘 and 𝑡𝑠 = 1 from the

PHC-index and obtain the path 𝑃𝑘,1;

3 initialize the merged graph of MCTS(𝑘) to be 𝑃𝑘,1;

4 for 𝑡𝑠 ← 2 to 𝑡𝑚𝑎𝑥 do //start the merge of 𝑃𝑘,𝑡𝑠
5 retrieve the vertices with the increased core time for 𝑡𝑠

from the PHC-index ; //implemented in 𝑂 (1) time
6 forall the vertex 𝑢 with the increased core time 𝑡𝑐 do
7 simulate to move 𝑢 to the last position of the

(𝑘, 𝑡𝑠 , 𝑡𝑐 )-shell and add links to the merged graph for

recording new predecessor-successor relationships ;

//Lemma 4.1
8 for each new link (𝑛,𝑛′, 𝑡𝑠 , 𝑡 ′𝑐 ) , remove the old link

(𝑛,𝑛′′, 𝑡𝑠 , 𝑡 ′′𝑐 ) with 𝑛′ ≠ 𝑛′′ or 𝑡 ′𝑐 ≠ 𝑡 ′′𝑐 if it exists

Lastly, it can be proved that, the merged graph constructed by

Algorithm 5 can also retain the property in Lemma 3.1, and the final

MCTS-index has the same space complexity as the one constructed

by Algorithm 3 due to Lemma 4.1, though the inner order of vertices

in core time shells may be different. Meanwhile, since the number

of vertices with increased core time is usually much less than the

total number of vertices for a (𝑘, 𝑡𝑠 )-structure, Algorithm 5 can

improve the efficiency of index construction significantly.

5 QUERY EXTENSION
In this section, we extend the semantics of the historical 𝑘-core

query from “what” to “when”, and demonstrate how the MCTS-

index addresses this brand-new type of queries efficiently.

5.1 When-Query Model
Firstly, we formally give the following general definition of When-

Query model in the context of querying historical 𝑘-cores.

Definition 5.1 (When Historical 𝑘-Core Query). For a temporal

graph, given 1) the start time 𝑡𝑠 and 2) another condition on a

specific metric 𝑓 (·) of historical 𝑘-cores, find one or more end time

{𝑡𝑒 } such that the metric values of historical 𝑘-cores {𝑓 (C𝑘[𝑡𝑠 ,𝑡𝑒 ] )}
satisfy the given condition.

The first condition (namely, starting from 𝑡𝑠 ) can avoid the un-

necessary complexity in analysis. If we treat 𝑡𝑠 as the output but

not the input of queries, an arbitrary time interval will belong to

the solution space at 𝑡2𝑚𝑎𝑥 scale. As a result, the query processing

will be extremely costly, and the number of qualified time intervals

could be large. However, our observation on temporal graphs often

focuses on dynamics or evolution with respect to a time line [19],

which means there should be a reference time and the observation

starts from or ends at there. Consequently, we choose to query 𝑡𝑒
for given 𝑡𝑠 , which can be implemented by exploiting the core time

shell to traverse the (𝑘, 𝑡𝑠 )-structure.
The second condition is flexible and can be defined according to

application scenarios. On the one hand, the metric 𝑓 (·) of historical
𝑘-cores is a user-defined function. For example, there are traditional

non-temporal metrics [3], such as average degree, internal density,

conductance, and clustering coefficient, and also temporal metrics
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Figure 4: A step-by-step example of updating the merged
graph (on the right) according to the heuristic vertex move-
ment (on the left) when 𝑡𝑠 is increased to 3.

such as interaction frequency [1, 29], persistence [15], burstiness [4,

22, 35], periodicity [23], continuity [17], and reliability [26, 27]. On

the other hand, the condition itself could be either constraint or

optimization on the metric. Obviously, such an abstract condition

is general enough to express various when queries.

5.2 Typical When-Query Template
With Definition 5.1, we give four typical query templates and their

examples respectively, as shown in Table 1.

1) Time of containment. This kind of queries aim to find the

time of interested members to join an evolving community. For

example, q1 requires the historical 𝑘-core to contain a given set of

vertices. Moreover, we can compose more advanced examples like

requiring it to contain a certain percentage of vertices in the set.

Note that, the metric 𝑓 (·) is an identity function in this case.

2) Time of satisfaction. This kind of queries aim to find the

time of the historical 𝑘-core to gain an expected property. For

example, q2 requires the historical 𝑘-core to have the given number

of vertices. Other than the size, the metric can be defined arbitrarily

as long as its value varies monotonically with 𝑡𝑒 . Otherwise, the

query processing cannot be stopped early before traversing the

entire (𝑘, 𝑡𝑠 )-structure.
3) Time of being optimal. This kind of queries aim to find the

time of the historical 𝑘-core to be optimal for an interested metric.

For example, q3 requires the historical 𝑘-core to have the greatest

average degree of its vertices. The average degree is usually not

monotonic for 𝑡𝑒 . Thus, q3 can be seen as an optimization task to

find the densest moment of the historical 𝑘-core.

4) Time period of being optimal. This kind of queries aim to

find the time period in which the historical 𝑘-core is optimal for a

metric of interest. For example, q4 requires the historical 𝑘-core to

grow most rapidly in the returned time period. Different from the

previous queries, this condition involves the comparison of more

than one historical 𝑘-cores, so that the result is a pair (which could

be extended to a list) of timestamps.

The above four typical When-Query templates can be applied in

many fields. Take the social network analysis as an example. Since

the previous studies [10, 20] have revealed that the most influential
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Algorithm 6:When-Query-Example(𝑘 , 𝑡𝑠 , |C𝑘[𝑡𝑠 ,𝑡𝑒 ] | ≥ 𝑠)

1 C𝑘[𝑡𝑠 ,𝑡𝑐 ] ← ∅, 𝑛 ← 𝑆 , 𝑡𝑐 ← 0 ; //initialization and start from 𝑆

2 while 𝑛 ≠ 𝐸 do //traverse vertices until reaching the end node
3 obtain 𝐴𝑡𝑠 , 𝐴𝑡𝑐 , and 𝐴𝑛 from 𝐵𝑘 (𝑛) in MCTS(𝑘);

4 𝑖 ← argmax

𝑖

{𝐴𝑡𝑠 [𝑖 ] |𝐴𝑡𝑠 [𝑖 ] ≤ 𝑡𝑠 } ; //get the latest successor

5 if 𝐴𝑡𝑐 [𝑖 ] ≠ 𝑡𝑐 then //meet a new core time shell
6 if 𝑡𝑐 ≠ 0 and | C𝑘[𝑡𝑠 ,𝑡𝑐 ] | ≥ 𝑠 then //condition is satisfied
7 return 𝑡𝑐 ; // 𝑡𝑐 is the earliest qualified end time

8 𝑡𝑐 ← 𝐴𝑡𝑐 [𝑖 ] ; //update the current core time

9 C𝑘[𝑡𝑠 ,𝑡𝑐 ] ← C
𝑘
[𝑡𝑠 ,𝑡𝑐 ] ∪ {𝐴𝑛 [𝑖 ] } ; //add a vertex

10 𝑛 ← 𝐴𝑛 [𝑖 ] ; //jump to the latest successor

11 return∞ ; //∞ means no qualified end time

users reside in the 𝑘-cores of social networks with high values of

𝑘 , the analysers may be interested in asking such questions: (q1)

when a known celebrity user became influential from a date; (q2)

when the number of influential users increased to one thousand

from a date; (q3) when the group of influential users achieved the

best conductance from a date; (q4) in which month the number of

influential users increased the most from a date.

In addition, there are other examples. [28] queries periods of

increased interaction between students from different classes, such

as during breaks, to indicate higher risk periods for disease trans-

mission. [24] queries time points in the runtime history of a smart

healthcare system for monitoring structural changes.

5.3 When-Query Processing
The when queries derived fromDefinition 5.1 can be addressed with

a unified pipeline. Specifically, we maintain the historical 𝑘-core

C𝑘[𝑡𝑠 ,𝑡𝑒 ] with a given 𝑡𝑠 in the ascending order of 𝑡𝑒 ≥ 𝑡𝑠 , and check

whether 𝑓 (C𝑘[𝑡𝑠 ,𝑡𝑒 ] ) can meet the query condition.

With the MCTS-index, the maintenance can be implemented

efficiently. We incrementally obtain the historical 𝑘-cores with the

same 𝑡𝑠 for each distinct core time 𝑡𝑐 but not each end time 𝑡𝑒 . In

this way, the total cost of maintenance only depends on the size

of the largest core but not the total size of all cores. Moreover, the

maintenance can stop early when the metric 𝑓 (·) is a monotonic

function on 𝑡𝑒 . For example, when processing q1 or q2 in Table 1,

it can be terminated as soon as the last vertex in the given vertex

set has been contained by the core or there have been the given

number of vertices in the core. Therefore, the MCTS-index can

accelerate the When-Query processing significantly.

Due to the limitation of paper length, only the query processing

algorithm of q2 in Table 1 is presented by Algorithm 6 as an example.

In a nutshell, for each enumerated distinct core time, we add all

vertices in the corresponding core time shell into the maintained

historical 𝑘-core, and return the core time if the query condition

has been satisfied.

The time complexity of the above uniform query processing

approach can be summarized as follows.

Theorem 5.1. The time complexity of When-Query processing
based on the MCTS-index is𝑂 (𝑣𝑛𝑢𝑚 · log 𝑙 + 𝑡𝑛𝑢𝑚 ·𝑂 𝑓 ), where 𝑣𝑛𝑢𝑚

is the number of traversed vertices bounded by the total number of
vertices in the (𝑘, 𝑡𝑠 )-structure, 𝑡𝑛𝑢𝑚 is the number of enumerated
core time bounded by the number of core time shells in the (𝑘, 𝑡𝑠 )-
structure, and 𝑂 𝑓 is the time complexity of 𝑓 (·).

Proof. Our approach is simply comprised of core maintenance

and metric evaluation. According to Theorem 3.5, the time complex-

ity of maintenance derived from the MCTS-query is𝑂 (𝑣𝑛𝑢𝑚 · log 𝑙).
Moreover, there are 𝑡𝑛𝑢𝑚 times of evaluation of 𝑓 (·), and thereby

the time complexity of evaluation is 𝑂 (𝑡𝑛𝑢𝑚 ·𝑂 𝑓 ). □

Lastly, we discuss an interesting issue: how efficient is the PHC-

index for addressing when queries. Firstly, the PHC-index cannot

maintain the historical 𝑘-core in the ascending order of 𝑡𝑒 as effi-

ciently as the MCTS-index. Because the time complexity of mainte-

nance based on the PHC-query is always 𝑂 ( |V| · log 𝑡). Secondly,
since the PHC-index is designed to determine whether or not a

vertex is contained by a specific historical 𝑘-core, we can develop a

dedicated algorithm to address the “time of containment” queries

optimally, which uses the PHC-index to obtain only the core time

of the given set of vertices and returns the maximum core time.

Therefore, the MCTS-index is generally the more efficient tool for

when query processing, and the PHC-index gains advantages on

those queries with vertex containment conditions.

6 EXPERIMENT
We conduct extensive experiments on a Linux machine with a 2.2

GHz CPU and 120 GB of RAM. All algorithms are implemented

using the C++ Standard Template Library.

6.1 Dataset
For fairness, we obtain the ten real-world datasets of [34] from the

public sources including SNAP [13] and KONECT [11]. The statis-

tics of the datasets are shown in Table 3. Except the regular graph

metrics like |V| and |E | that represent the scale in topology, the

number of distinct timestamps 𝑡𝑚𝑎𝑥 represents the scale in time. By

comparing 𝑡𝑚𝑎𝑥 and the average number of distinct core time 𝑡 for

each dataset respectively, we empirically prove the discreteness of

the evolution of vertex coreness (see Figure 2a), which guarantees

the compression effectiveness of the MCTS/PHC-index. Moreover,

the maximum coreness 𝑘𝑚𝑎𝑥 is as small as assumed, so that con-

structing MCTS(𝑘) for each 𝑘 ∈ [2, 𝑘𝑚𝑎𝑥 ] will not dramatically

expand the overall index size.

6.2 Index Overhead
We construct four indexes including the PHC-index [34], the CTS-

index, the MCTS-index (id), and the MCTS-index (lp) to compare

index overheads. The difference between the two versions of the

MCTS-index is that, the (id) version ranks the vertices in each core

time shell by their ids, and the (lp) version heuristically moves a

vertex to the last position of its new core time shell (Algorithm 5).

Figure 5a shows the space overheads on all datasets. We have the

following observations. 1) Compared to the PHC-index, our MCTS-

index is at least 1.36 times, at most 2.48 times, and on average 2.16

times larger. Thus, the MCTS-index is almost as space-efficient as

the PHC-index. 2) In practice, not every MCTS(𝑘) needs to be stored.

The smaller the value of 𝑘 , the larger the size of MCTS(𝑘), and the
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Table 3: The statistics of public real-world temporal graphs used in our experiments.

CollegeMsg Email MathOverflow AskUbuntu SuperUser WikiTalk Youtube DBLP Flickr Wikipedia

|V| 1,899 986 24,818 159,316 194,085 1,140,149 3,223,585 1,824,701 2,302,925 1,870,709

|E | 59,835 332,334 506,550 964,437 1,443,339 7,833,140 9,375,374 29,487,744 33,140,017 39,953,145

𝑡𝑚𝑎𝑥 58,911 207,880 505,784 960,866 1,437,199 7,375,042 203 77 134 2,198

𝑡 51.82 174.72 85.38 20.73 29.28 54.13 5.72 3.46 8.48 34.46

𝑘𝑚𝑎𝑥 20 34 78 48 61 124 88 286 600 206

CollegeMsg

Email
MathOverflow

AskUbuntu

SuperUser

W
ikiTalk

Youtube

DBLP
Flickr

W
ikipedia

100

101

102

103

104

105

S
iz
e
(M

B
)

PHC-index MCTS-index(lp) MCTS-index(id) CTS-index

(a) Space overheads.

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280

10−5

10−4

10−3

10−2

10−1

100

50%
25%

k

M
C
T
S
(k
)
/
M
C
T
S
-i
n
d
ex Email AskUbuntu WikiTalk

DBLP Wikipedia

(b) Distribution of individual MCTS(𝑘) size.

CollegeMsg

Email
MathOverflow

AskUbuntu

SuperUser

W
ikiTalk

Youtube

DBLP
Flickr

W
ikipedia

100

101

102

103

104

105

106

T
im

e
(s
)

PHC-index MCTS-Index(lp) MCTS-index(id) CTS-index

(c) Time overheads.

Figure 5: Comparison of index construction overheads.

less cohesive the historical 𝑘-core, as illustrated in Figure 5b. Thus,

the MCTS-Index could include MCTS(𝑘) only if 𝑘 is greater than a

threshold, thereby reducing the space overhead while preserving

the most cohesive results. 3) Compared to the MCTS-index (id) with

a global order of vertex, the MCTS-index (lp) is always smaller. It

proves the effectiveness of heuristics that exploits the correlation

of core time between vertices in Algorithm 5. 4) As expected, the

sizes of the CTS-indexes are too large, so that we only construct the

CTS-indexes for the two smallest datasets. It confirms the necessity

of developing Algorithm 5.

Figure 5c shows the time overheads on all datasets. Note that,

the time overhead of the MCTS-index is composed of two parts:

constructing the PHC-index and obtaining the MCTS-index from

that (see Algorithm 5). The construction time of the MCTS-index

is almost equal to that of the PHC-index, which means our vertex

moving algorithm (no matter which position) costs only a small

percentage of the total construction time. In detail, the percentage

is between 0.3% and 1.9%, and the mean is 0.8%.

6.3 What-Query Efficiency
We compare the efficiency of the PHC-query [34], TCD-single

(only dealing with a single query though the TCD algorithm is

designed for batch processing) [31], and the MCTS-query (using

the MCTS-index (lp)) with random queries. For a specific dataset

and each combination of 𝑘 = 10%, 30%, 50%, 70%, 90% of 𝑘𝑚𝑎𝑥 and

(𝑡𝑒 − 𝑡𝑠 ) = 10%, 30%, 50%, 70%, 90% of 𝑡𝑚𝑎𝑥 , we generate a group of

10,000 queries with random span-fixed time interval [𝑡𝑠 , 𝑡𝑒 ]. The
reported response time for each group is the mean.

Figure 6 shows the results on three datasets including Wikipedia,

Flickr, and WikiTalk. They are the three largest datasets except

DBLP and Youtube, which we do not adopt because [34] does not

obtain them from public sources. Moreover, WikiTalk has the most

timestamps, and thereby is suitable to test the sensitivity to time

span. The results demonstrate that, the MCTS-query is generally

much more efficient than the PHC-query, and the index-free TCD-

single is the slowest as expected, which means our main research

objective is achieved. Moreover, unlike the PHC-query, the effi-

ciency of the MCTS-query increases significantly with the increase

of 𝑘 or the decrease of (𝑡𝑒 − 𝑡𝑠 ), because the MCTS-query only

traverses the vertices in the historical 𝑘-cores. Especially for the

groups with the time span (𝑡𝑒 − 𝑡𝑠 ) ≤ 30%𝑡𝑚𝑎𝑥 in which most

ordinary queries fall, the MCTS-query outperforms the PHC-query

by 1∼3 orders of magnitude.

Note that, in the only exceptional group for which the MCTS-

query is slower than the PHC-query (see Figure 6e), the historical

𝑘-cores have almost the same size of the entire graph.

6.4 When-Query Effectiveness
To evaluate the effectiveness of When-Query, we implement the

algorithms to address the when historical 𝑘-core queries in Table 1

based on the MCTS-index (lp).

For q1, we run four queries with 𝑘 = 40, 𝑡𝑠 = 2001.10 (month),

and𝑉 comprised of the vertices whose static coreness is in the range

of [40,59], [60,79], [80,99], or [100,119] respectively on WikiTalk.

Figure 7a shows the distribution of the earliest end time 𝑡𝑒 to join the

historical 𝑘-core for each vertex. The result reveals an interesting

fact: the vertices that are more influential (namely, have the greater

coreness) in the whole history would also join a historical 𝑘-core

earlier from a specific start time in the sense of statistics.

For q2, we run a set of queries with 𝑘 = 30, 𝑡𝑠 = 2009.09 (month),

and 𝑠 = 100, 101, · · · , 500 on three datasets including AskUbuntu,

MathOverflow, and SuperUser, respectively. Figure 7b shows the

result 𝑡𝑒 . Generally, the historical 𝑘-cores gradually grow larger

with the expanding of time interval. Moreover, the historical 𝑘-core

of AskUbuntu grows more quickly and frequently than others.
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Figure 6: The query time for random historical 𝑘-core queries with varied 𝑘 and (𝑡𝑒 − 𝑡𝑠 ) on the three largest datasets.
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Figure 7: Case studies of when historical 𝑘-core query.

For q3, we run a query with 𝑘 = 50 and 𝑡𝑠 = 2011 (year) on

DBLP. Figure 7c shows the average degree of the historical 𝑘-core

with 𝑡𝑒 = 2011, 2012, · · · , 2018. The answer to the query is 2015, in

which year the average degree reaches the peak. Then, the average

degree starts to fall, which means the new vertices of the historical

𝑘-core have the relatively lower degree (but still no less than 50).

For q4, we run a query with 𝑘 = 15 and 𝑡𝑠 = 2004.04 (month) on

CollegeMsg. Figure 7d shows the growth speed (# vertex/month) of

the historical 𝑘-core in each period from 𝑡𝑒 until 𝑡
′
𝑒 . Starting from

April, the historical 𝑘-core grows most rapidly between April (𝑡𝑒 )

and May (𝑡 ′𝑒 ). That is because the distribution of the edge number

in each month is skewed and 45.4% of the edges appear in May.

7 CONCLUSION
We propose a novel index called MCTS-index for temporal graphs.

By organizing the vertices in a list of “shells” in the ascending order

of core time, the MCTS-index facilitates nearly optimal processing

of both “what” and “when” historical 𝑘-core queries. Meanwhile,

it is also space-efficient due to the compression technique that

leverages the discreteness of the evolution of vertex coreness.
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