个人简介
当前位置: 中文主页 > 简介
江佳伟,博士,武汉大学计算机学院教授、博士生导师。从事机器学习算法、大数据处理与分析、图计算、联邦学习等方向的研究,发表CCF-A 类论文50余篇。主持国家自然科学基金优青项目(海外),国家自然科学基金面上项目,国家重点研发计划课题,湖北省重点研发专项,CCF-蚂蚁科研基金等项目。
学术奖励:
1)CCF优秀博士学位论文奖(每年10名)
2)ACM China全国新星提名(每年5名)
3)ACM China SIGMOD优秀博士学位论文奖
学术服务:
长期担任VLDB、KDD、ICDE、WWW、AAAI、DASFAA等国际会议程序委员,IEEE TKDE、VLDB Journal等期刊审稿人。
指导学生竞赛:
1)中国研究生人工智能创新大赛,一等奖,2022年
2)全国大学生计算机系统能力大赛,特等奖(唯一),2023年
3)全国大学生计算机系统能力大赛-智能系统创新设计赛(小米杯),一等奖,2024年
4)花旗杯金融创新应用大赛,特等奖(唯一),2024年
研究生培养:
1)学术导向:根据学生个人兴趣选择研究方向。
2)学生指导:全流程参与和指导每个学生的第一个工作。
3)多元培养:鼓励学生到工业界做research intern,目前基本每个学生都被直接推荐到头部公司实习。
4)成果奖励:每个学生发表第一篇CCF A奖励8000,每月补助按发表A类数量递增,上不封顶。
---------------------------
欢迎报考本组硕士、博士,本组长期与国内工业界、海外研究机构保持密切合作。
本组长期招聘博士后(重点资助),并协助申请武汉大学弘毅博士后(入选后年薪30万),详见:
https://www.whu.edu.cn/info/1118/174554.htm
https://cs.whu.edu.cn/info/1040/43021.htm
代表性论文:
- Jiawei Jiang, Shaoduo Gan, Bo Du, Gustavo Alonso, Ana Klimovic, Ankit Singla, Wentao Wu, Sheng Wang, Ce Zhang. A Systematic Evaluation of Machine Learning on Serverless Infrastructure. The VLDB Journal, 2024.
- Jiawei Jiang, Yi Wei, Yu Liu, Wentao Wu, Chuang Hu, Zhigao Zheng, Ziyi Zhang, Yingxia Shao, Ce Zhang. How good are machine learning clouds? Benchmarking two snapshots over 5 years. The VLDB Journal, 2024.
- Jiawei Jiang, Lukas Burkhalter, Fangcheng Fu, Bolin Ding, Bo Du, Anwar Hithnawi, Bo Li, Ce Zhang. VF-PS: How to Select Important Participants in Vertical Federated Learning, Efficiently and Securely? NeurIPS. 2022.
- Jiawei Jiang, Yusong Hu, Xiaosen Li, Wen Ouyang, Zhitao Wang, Fangcheng Fu, Bin Cui. Analyzing Online Transaction Networks with Network Motifs. SIGKDD. 2022.
- Jiawei Jiang, Shaoduo Gan, Yue Liu, Fanlin Wang, Gustavo Alonso, Ana Klimovic, Ankit Singla, Wentao Wu, Ce Zhang. Towards Demystifying Serverless Machine Learning Training. SIGMOD, 2021.
- Jiawei Jiang, Fangcheng Fu, Tong Yang, Yingxia Shao, Bin Cui. SKCompress: compressing sparse and nonuniform gradient in distributed machine learning. The VLDB Journal, 2020.
- Jiawei Jiang, Pin Xiao, Lele Yu, Xiaosen Li, Xupeng Miao, Zhipeng Zhang, Bin Cui. PSGraph: How Tencent trains large-scale graphs with Spark? ICDE, 2020.
- Jiawei Jiang, Bin Cui, Ce Zhang, Fangcheng Fu. DimBoost: Boosting Gradient Boosting Tree to Higher Dimensions. ACM SIGMOD, 2018.
- Jiawei Jiang, Fangcheng Fu, Tong Yang, Bin Cui. SketchML: Accelerating Distributed Machine Learning with Data Sketches. ACM SIGMOD, 2018.
- Jiawei Jiang, Bin Cui, Ce Zhang, Lele Yu. Heterogeneity-aware Distributed Parameter Servers. ACM SIGMOD, 2017.
- Jiawei Jiang, Yunhai Tong, Hua Lu, Bin Cui, et al. GVoS: A General System for Near-Duplicate Video Related Applications on Storm. ACM TOIS, 2017.
- 江佳伟, 符芳诚, 邵蓥侠, 崔斌. 面向高维特征和多分类的分布式梯度提升树. 软件学报, 2019.
- Yuxiang Wang, Xiao Yan, Chuang Hu, Quanqing Xu, Chuanhui Yang, Fangcheng Fu, Wentao Zhang, Hao Wang, Bo Du, Jiawei Jiang*. Generative and Contrastive Paradigms Are Complementary for Graph Self-Supervised Learning. ICDE, 2024. (corresponding author)
- Qiang Huang, Xin Wang, Susie Xi Rao, Zhichao Han, Zitao Zhang, Yongjun He, Quanqing Xu, Yang Zhao, Zhigao Zheng, Jiawei Jiang*. BenchTemp: A General Benchmark for Evaluating Temporal Graph Neural Networks. ICDE, 2024. (corresponding author)
- Fangcheng Fu, Xuanyu Wang, Jiawei Jiang*, Huanran Xue, and Bui Cui. ProjPert: Projection-based Perturbation for Label Protection in Split Learning based Vertical Federated Learning. TKDE, 2024. (corresponding author)
- Shaoduo Gan, Jiawei Jiang*, Binhang Yuan, Ce Zhang, XiangruLian, RuiWang, and others. BAGUA: Scaling up Distributed Learning with System Relaxations. VLDB, 2022. (corresponding author)
- Yang Li, Yu Shen, Wentao Zhang, Jiawei Jiang*, Bolin Ding, Yaliang Li, Jingren Zhou, Zhi Yang, Wentao Wu, Ce Zhang, Bin Cui. VolcanoML: Speeding up End-to-End AutoML via Scalable Search Space Decomposition. VLDB, 2021. (corresponding author)
- Yang Li, Jiawei Jiang*, Jinyang Gao, Yingxia Shao, Ce Zhang, Bin Cui. Efficient Automatic CASH via Rising Bandits. AAAI, 2020. (corresponding author)
- Wentao Zhang, Jiawei Jiang*, Yingxia Shao, Bin Cui. Efficient Diversity-Driven Ensemble for Deep Neural Networks. ICDE, 2020. (corresponding author)
- Fangcheng Fu, Jiawei Jiang*, Yingxia Shao, Bin Cui. An experimental evaluation of large scale gbdt systems. VLDB, 2019. (corresponding author)
- Zhipeng Zhang, Jiawei Jiang*, Wentao Wu, Ce Zhang, Lele Yu, Bin Cui. Mllib*: Fast training of glms using spark mllib. ICDE, 2019. (corresponding author)