• Click:

Jiawei Jiang

Personal Information

 Doctoral Supervisor  Master Tutor

Gender:Male

Education Level:With Certificate of Graduation for Doctorate Study

Status:Employed

School/Department:计算机学院

Personal Profile

江佳伟,博士,武汉大学计算机学院教授、博士生导师。从事机器学习算法、大数据处理与分析、图计算、联邦学习等方向的研究,发表CCF-A 类论文50余篇。主持国家自然科学基金优青项目(海外), 国家重点研发计划课题,湖北省重点研发专项,CCF-蚂蚁科研基金等项目。


主要奖励:

1)CCF优秀博士学位论文奖(每年10名)

2)ACM China全国新星提名(每年5名)

3)ACM China SIGMOD优秀博士学位论文奖


学术服务

长期担任VLDB、KDD、ICDE、WWW、AAAI、DASFAA等国际会议程序委员,IEEE TKDE、VLDB Journal等期刊审稿人。


指导学生竞赛:

1)中国研究生人工智能创新大赛,一等奖,2022年

2)全国大学生计算机系统能力大赛,特等奖(唯一),2023年

3)全国大学生计算机系统能力大赛-智能系统创新设计赛(小米杯),一等奖,2024年

4)花旗杯金融创新应用大赛,特等奖(唯一),2024年


----------

欢迎报考本组硕士、博士。

本组长期与国内工业界、海外研究机构保持密切合作。


本组长期招聘博士后(重点资助),并协助申请武汉大学弘毅博士后(入选后年薪30万),详见:

https://www.whu.edu.cn/info/1118/174554.htm

https://cs.whu.edu.cn/info/1040/43021.htm



代表性论文:

- Jiawei Jiang, Shaoduo Gan, Bo Du, Gustavo Alonso, Ana Klimovic, Ankit Singla, Wentao Wu, Sheng Wang, Ce Zhang. A Systematic Evaluation of Machine Learning on Serverless Infrastructure. The VLDB Journal, 2024.

- Jiawei Jiang, Yi Wei, Yu Liu, Wentao Wu, Chuang Hu, Zhigao Zheng, Ziyi Zhang, Yingxia Shao, Ce Zhang. How good are machine learning clouds? Benchmarking two snapshots over 5 years. The VLDB Journal, 2024.

- Jiawei Jiang, Lukas Burkhalter, Fangcheng Fu, Bolin Ding, Bo Du, Anwar Hithnawi, Bo Li, Ce Zhang. VF-PS: How to Select Important Participants in Vertical Federated Learning, Efficiently and Securely? NeurIPS. 2022.

- Jiawei Jiang, Yusong Hu, Xiaosen Li, Wen Ouyang, Zhitao Wang, Fangcheng Fu, Bin Cui. Analyzing Online Transaction Networks with Network Motifs. SIGKDD. 2022.

- Jiawei Jiang, Shaoduo Gan, Yue Liu, Fanlin Wang, Gustavo Alonso, Ana Klimovic, Ankit Singla, Wentao Wu, Ce Zhang. Towards Demystifying Serverless Machine Learning Training. SIGMOD, 2021.

- Jiawei Jiang, Fangcheng Fu, Tong Yang, Yingxia Shao, Bin Cui. SKCompress: compressing sparse and nonuniform gradient in distributed machine learning. The VLDB Journal, 2020.

- Jiawei Jiang, Pin Xiao, Lele Yu, Xiaosen Li, Xupeng Miao, Zhipeng Zhang, Bin Cui. PSGraph: How Tencent trains large-scale graphs with Spark? ICDE, 2020.

- Jiawei Jiang, Bin Cui, Ce Zhang, Fangcheng Fu. DimBoost: Boosting Gradient Boosting Tree to Higher Dimensions. ACM SIGMOD, 2018.

- Jiawei Jiang, Fangcheng Fu, Tong Yang, Bin Cui. SketchML: Accelerating Distributed Machine Learning with Data Sketches. ACM SIGMOD, 2018. 

- Jiawei Jiang, Bin Cui, Ce Zhang, Lele Yu. Heterogeneity-aware Distributed Parameter Servers. ACM SIGMOD, 2017.

- Jiawei Jiang, Yunhai Tong, Hua Lu, Bin Cui, et al. GVoS: A General System for Near-Duplicate Video Related Applications on Storm. ACM TOIS, 2017.

- 江佳伟, 符芳诚, 邵蓥侠, 崔斌. 面向高维特征和多分类的分布式梯度提升树. 软件学报, 2019.

- Yuxiang Wang, Xiao Yan, Chuang Hu, Quanqing Xu, Chuanhui Yang, Fangcheng Fu, Wentao Zhang, Hao Wang, Bo Du, Jiawei Jiang*. Generative and Contrastive Paradigms Are Complementary for Graph Self-Supervised Learning. ICDE, 2024. (corresponding author)

- Qiang Huang, Xin Wang, Susie Xi Rao, Zhichao Han, Zitao Zhang, Yongjun He, Quanqing Xu, Yang Zhao, Zhigao Zheng, Jiawei Jiang*. BenchTemp: A General Benchmark for Evaluating Temporal Graph Neural Networks. ICDE, 2024. (corresponding author)

- Fangcheng Fu, Xuanyu Wang, Jiawei Jiang*, Huanran Xue, and Bui Cui. ProjPert: Projection-based Perturbation for Label Protection in Split Learning based Vertical Federated Learning. TKDE, 2024. (corresponding author)

- Shaoduo Gan, Jiawei Jiang*, Binhang Yuan, Ce Zhang, XiangruLian, RuiWang, and others. BAGUA: Scaling up Distributed Learning with System Relaxations. VLDB, 2022. (corresponding author)

- Yang Li, Yu Shen, Wentao Zhang, Jiawei Jiang*, Bolin Ding, Yaliang Li, Jingren Zhou, Zhi Yang, Wentao Wu, Ce Zhang, Bin Cui. VolcanoML: Speeding up End-to-End AutoML via Scalable Search Space Decomposition. VLDB, 2021. (corresponding author)

- Yang Li, Jiawei Jiang*, Jinyang Gao, Yingxia Shao, Ce Zhang, Bin Cui. Efficient Automatic CASH via Rising Bandits. AAAI, 2020. (corresponding author)

- Wentao Zhang, Jiawei Jiang*, Yingxia Shao, Bin Cui. Efficient Diversity-Driven Ensemble for Deep Neural Networks. ICDE, 2020. (corresponding author)

- Fangcheng Fu, Jiawei Jiang*, Yingxia Shao, Bin Cui. An experimental evaluation of large scale gbdt systems. VLDB, 2019. (corresponding author)

- Zhipeng Zhang, Jiawei Jiang*, Wentao Wu, Ce Zhang, Lele Yu, Bin Cui. Mllib*: Fast training of glms using spark mllib. ICDE, 2019. (corresponding author)


Other Contact Information

No Content

Educational Experience

    No Content

Work Experience

No Content

Social Affiliations

Research Focus

    NO Cnotent

Research Group

No Content