蒋序林

微信扫描

当前位置: 首页

  • 1
  • 博士生导师
  • 硕士生导师
  • 教师英文名称:Xulin Jiang
  • 学历:研究生毕业
  • 电子邮箱:xljiang@whu.edu.cn
  • 办公地点:化西407
  • 性别:男
  • 入职时间:2006-11-01
  • 联系方式:027-68754226,xljiang@whu.edu.cn
  • 在职信息:在职
  • 其他任职:中国医药卫生文化协会生物医药材料专业委员会委员
  • 毕业院校:荷兰阿姆斯特丹大学
  • 所属院系: 化学与分子科学学院
  • 学科:

教育与研究经历

1985,9-1989,7     成都科技大学优秀生试点班, 高分子材料系, 学士

1989,9-1992,6     成都科技大学高分子材料工程国家重点实验室,硕士(导师:徐僖院士,郑邦乾教授)

1992,7-2000,9     上海交通大学化学化工学院高分子材料系        助教,讲师,副教授

2000,9-2004,5     荷兰阿姆斯特丹大学高分子分析组, 博士(导师: Prof. Dr. P. J. Schoenmakers)

2004,6-2006,10    荷兰乌特勒支大学药学院药剂系博士后(导师: Prof. Dr. W.E. Hennink)

2011.6-12             荷兰阿姆斯特丹大学,高访研究员。

2006,11-至今:    武汉大学化学学院生物医用高分子材料教育部重点实验室(教授,博导)


研究领域与兴趣

 1. 可控高分子的合成、改性及共轭技术的研究

 2. 基因药物用新型可降解高分子载体的研究

 3. 热敏性可降解高分子药物靶向载体研究(抗肿瘤药物、多肽蛋白质药物)

 4. 温敏性可注射可降解高分子水凝胶载体(多肽蛋白细胞)的研究

 5. HPLC分离与表征功能高分子


学术兼职

中国医药卫生文化协会生物医药材料专业委员会委员


主持科研项目:

主持国家重点研发计划“政府间国际科技创新合作”重点专项:

  1. 生物医用新型可示踪温敏改性甲壳素的合成和表征(2021YFE0104100),2021-2023年


主持国家自然科学基金项目:

1. 可注射可降解的长效镇痛无溶剂缓释体系(22175133),2022-2025年 

2. 可降解温敏物理交联改性甲壳素止血微球的研究(21875168),2019-2022年

3. 可降解温敏性可注射改性甲壳素水凝胶的制备及其细胞载体的研究(21674083)

4. 多功能化聚合物超分子自组装基因载体系统的研究 (21374083)

5. 长循环-靶向-逃逸-示踪-多功能高分子胶束药物载体及其与细胞相互作用的研究 (21174109)

6. 稳定化热敏性肿瘤靶向高分子纳米胶束载药体系的研究(21074100)

7. 点击化学合成可降解梳形聚合物及其用于基因载体的研究 (20774068)

8.  HPLC用于新型生物医用高分子的分离与表征(20744002)


主持高校博士点新教师基金项目:点击化学可控合成基因载体用新型可降解星形阳离子高分子(20070486035);

主持教育部回国基金:高效液相色谱分离和表征新型药用高分子。


主持横向项目:

羧甲基甲壳素的检测方法研究,企业横向项目,2016.05 - 2017.12,26万,主持,结题;

止血胶原粉的开发研究,企业横向项目,2020.1-2022.12 50万,主持,在研;

温敏改性甲克素水凝胶医用研究,企业横向项目,2020.8-2025.12 50万,主持,在研;

药物植入缓释体系的开发研究,企业横向项目,2022.1-2026.12 30万,主持,在研。


作为骨干成员参与多项973项目(2005CB623903, 2009CB930300,2011CB606202)和国家重点研发计划重点专项 (2016YFC1100700,2016YFB0700802,2018YFB1105502)。


近期代表性研究论文及授权专利:

1. S. Lv and X. Jiang*, Silver loaded biodegradable carboxymethyl chitin films with long-lasting antibacterial activity for infected wound healing,Biomater. Sci., 2022, DOI: 10.1039/D2BM01046A.

2. L. Huang, H.-J. Zhan, X.-L. Jiang*, Visualization of degradation of injectable thermosensitive hydroxypropyl chitin modified by aggregation-induced emission, Carbohydr. Polym.2022, 293, 119739.

3. Q.-M. Jiang*, X.-L. Jiang*, et al, Targeted and fluorescence traceable multifunctional host-guest supramolecular gene delivery platform based on poly(cyclodextrin) and rhodamine conjugated disulfide-containing azobenzeneterminated branched polymer, Int J Polym Mater Polym Biomater, 2022, 71, DOI: 10.1080/00914037.2022.2029438.

4. X.-F. Ji*, H.-W. Shao, X.-H. Li, M. W. Ullah, G.-W. Luo, Z.-Y. Xu, L.-M. Ma, X.-C. He, Z.-H. Lei, Q. Li, X.-L. Jiang*, G. Yang*, Y. Zhang*, Injectable immunomodulation-based porous chitosan microspheres/HPCH hydrogel composites as a controlled drug delivery system for osteochondral regeneration. Biomaterials. 2022, 285, 121530.

5. F. Yang, Q-Q Qiao, M.-Z. Cai, Z.-G. Xia*, X.-L. Jiang*, Bupivacaine-loaded hydroxypropyl chitin based sponges prepared via a solvent-free process provide long-acting local anesthesia for postoperative painJ Drug Delivery Sci Tech, 2022, 73, 103453.

6. W.-B. LiuM.-S. MaZ.-H. LeiZ.-X. XiongT.-H. TaoP.-F. LeiY.-H. Hu*X.-L. Jiang*J. Xiao*Intra-articular injectable hydroxypropyl chitin/hyaluronic acid hydrogel as bio-lubricants to attenuate osteoarthritis progression, Mater Design, 2022, 217, 110579.

7. S.-Y. Lv, M.-Z. Cai, F. Leng, X.-L. Jiang*, Carboxymethyl chitin-based hemostatic sponges with high strength and shape memory for non-compressible hemorrhage, Carbohydr. Polym.2022, 288, 119369.

8. Q-Q Qiao, X.-Y. Fu, R. Huang, S.-Q. Lei, Y. Leng, Z.-G. Liu, Z.-G. Xia*, X.-L. Jiang*, Ropivacaine-loaded, hydroxypropyl chitin thermo-sensitive hydrogel combined with hyaluronan: an injectable, sustained-release system for providing long-lasting local anesthesia in rats, Reg Anesth Pain Med 2022, 47, 234-241.

9. F. Leng, S. Lei, B. Luo, S.-Y. Lv, L. Huang, X.-L. Jiang*, Size-tunable and biodegradable thrombin-functionalized carboxymethyl chitin microspheres for endovascular embolizationCarbohydr. Polym.2022, 286, 119274. https://doi.org/10.1016/j.carbpol.2022.119274

10. F. Leng, F.-X. Chen, X.-L. Jiang*, Modified porous carboxymethyl chitin microspheres by an organic solvent-free process for rapid hemostasis, Carbohydr. Polym.2021, 270, 118348.

11. M.-S. Ma, Y.-L. Zhong and X.-L. Jiang*, Injectable photothermally active antibacterial composite hydroxypropyl chitin hydrogel for promoting wound healing process through photobiomodulation2021Journal of Materials Chemistry B, 2021, 9, 4567-4576.

12. J.-Y. Zheng, S.-Y. Lv, Y.-L. Zhong, X.-L. Jiang*, Injectable hydroxypropyl chitin hydrogels embedded with carboxymethyl chitin microspheres prepared via a solvent-free process for drug delivery, Journal of Biomaterials Science, Polymer Edition2021, 32N12, 1564-1583.

13. Q.-L. LiJ. LiuH.-L. FanL. ShiY. DengL. ZhaoM.-X. XiangY.-R. XuX.-L. Jiang G.-B. WangL. WangZ. WangIDO-inhibitor potentiated immunogenic chemotherapy abolishes primary tumor growth and eradicates metastatic lesions by targeting distinct compartments within tumor microenvironment, Biomaterials, 2021, 269, 120388https://doi.org/10.1016/j.biomaterials.2020.120388.

14. Y.-W. Xu, Y. Xu, B. Bi, M.-J. Hou, L. Yao, Q. Du, A. He, Y. Liu, C. Miao, X. Liang, X.-L. Jiang*, G.-D. Zhou, Y.-L. Cao*, A moldable thermosensitive hydroxypropyl chitin hydrogel for 3D cartilage regeneration in vitro and in vivoActa Biomaterialia, 2020, 108, 87-96.

15. Y. Zhao, J.-Z. Li, F. Leng, S.-Y. Lv, W. Huang, W.-Q. Sun, X.-L. Jiang* Degradable porous carboxymethyl chitin hemostatic microspheres Journal of Biomaterials Science, Polymer Edition, 202031:11, 1369-1384.

16. J. Liu, L. Zhao, L. Shi, Y. Yuan, D. Fu, Z.-L. Ye, Q.-L. Li, Y. Deng, X.-X. Liu, Q.-Y. Lv, Y.-N. Cheng, Y.-R. Xu, X.-L. Jiang, G.-B. Wang, L. Wang, and Z. WangA sequentially responsive nanosystem breaches cascaded bio-barriers and suppresses P-glycoprotein function for reversing cancer drug resistanceACS Appl. Mater. Interfaces 2020, 12N49, 54343-54355, https://doi.org/10.1021/acsami.0c13852.

17. J.-Z. Li, Y. Zhao, X.-L. Jiang*, Quantitative analysis of protein in thermosensitive hydroxypropyl chitin for biomedical applications, Analytical Biochemistry2020, 599, 113745.

18. M.-S. Ma, Y.-L. Zhong, X.-L. Jiang*, Thermosensitive and pH-responsive tannin-containing hydroxypropyl chitin hydrogel with long-lasting antibacterial activity for wound healing, Carbohydr. Polym.2020, 236, 116096.

19. X.-F. Ji, Z.-H. Lei, M.Yuan, H. Zhu, Y. Xi, W.-B. Liu, H.-X. Pu, J.-W. Jiang, Y. Zhang*, X.-L. Jiang*, J. Xiao*, Cartilage repair mediated by thermosensitive photocrosslinkable TGFβ1-loaded GM-HPCH via immunomodulating macrophages, recruiting MSCs and promoting chondrogenesis. Theranostics 2020, 10N6, 2872-2887. IF 11.556.

20. X.-F. Ji, Y. Xi, L.-M. Ma, B. Bi, H. Zhu, Z.-H. lei, W.-B. Liu, H.-X. Pu, J.-W. Jiang, X.-L. Jiang*, Y. Zhang*, J. Xiao*, Mesenchymal stem cell-loaded thermosensitive hydroxypropyl chitin hydrogel combined with a three-dimensional-printed poly(ε-caprolactone) /nano-hydroxyapatite scaffold to repair bone defects via osteogenesis, angiogenesis and immunomodulation, Theranostics 2020, 10N2, 725-740.

21. P. Yu, Y.-P. Liu, R.-T. Jin, P. Zhang, C.-M. Ding, X.-L. Jiang, J.-Q. Xing, B. Bi, J. Xie,* and J.-S. Li*Thermosensitive polysaccharide hydrogel as a versatile platform for prolonged salmon calcitonin release and calcium regulationACS Biomater. Sci. Eng. 2020, 6, 4077-4086

22. P. Yu, J. Xie, Y. Chen, J.-M. Liu, Y.-P. Liu, B. Bi, J. Luo, S.-Y. Li, X.-L. Jiang*, J.-S. Li*A thermo-sensitive injectable hydroxypropyl chitin hydrogel for sustained salmon calcitonin release with enhanced osteogenesis and hypocalcemic effectsJ. Mater. Chem. B, 20208, 270-281.

23. B. Bi, M.-S. Ma, S.-Y. Lv, R.-X. Zhuo, X.-L. Jiang*, In-situ forming thermosensitive hydroxypropyl chitin-based hydrogel crosslinked by Diels-Alder reaction for three dimensional cell culture, Carbohydr. Polym.2019, 212, 368-377.

24. Guangyan Zhang 1,2,* and Xulin Jiang, Temperature Responsive Nanoparticles Based on PEGylated Polyaspartamide Derivatives for Drug Delivery, Polymers, 2019,11N2, 00316

25. B. Bi, H. Liu, W.-T. Kang, R.-X. Zhuo, X.-L. Jiang*, An injectable enzymatically crosslinked tyramine-modified carboxymethyl chitin hydrogel for biomedical applications, Colloid Surfaces B, 2019, 175, 614-624.

26. Y. Li, X.-L. Jiang, L. Li, Z.-N. Chen, G. Gao, R. Yao, W. Sun, 3D printing human induced pluripotent stem cells with novel hydroxypropyl chitin bioink: scalable expansion and uniform aggregation, Biofabrication, 2018, 10N4, 044101.

27. M. Yuan, B. Bi, J.-C. Huang, R.-X. Zhuo, X.-L. Jiang*, Thermosensitive and photocrosslinkable hydroxypropyl chitin-based hydrogels for biomedical applications, Carbohydr. Polym.2018, 192, 10-18.

28. J. Liu, X.-X. Liu, Y. Yuan, Q.-L. Li, B.-C. Chang, L.-M. Xu, B. Cai, C. Qi, C. Li, X.-L. Jiang, G.-B. Wang, Z. Wang, L. Wang, Supramolecular Modular Approach toward Conveniently Constructing and Multifunctioning a pH/Redox Dual-Responsive Drug Delivery Nanoplatform for Improved Cancer ChemotherapyACS Appl. Mater. Interfaces 2018, 10, 26473-26484

29. J.-C. Huang,X.-L. Jiang*,Injectable and degradable pH-responsive hydrogel via spontaneous amino-yne click reaction, ACS Appl. Mater. Inter., 2018,10(1), 361-370.

30. Y.-T. Zhang Q.-M. JiangM. WojnilowiczS.-J. PanY. JuW.-J. ZhangJ. LiuR.-X. ZhuoX.-L. Jiang*   Acid-sensitive poly(β-cyclodextrin)-based multifunctional supramolecular gene vectorPolym. Chem.20189(4)450~462

31. Y.-T. Zhang Q.-M. JiangB. BiL.-M. XuJ. LiuR.-X. ZhuoX.-L. Jiang*, A bioreducible supramolecular nanoparticle gene delivery system based on cyclodextrin-conjugated polyaspartamide and adamantyl-terminated polyethylenimineJ. Mater. Chem. B20186(4)797~808.

32. 付开乔,张光彦,蒋序林,聚天冬酰胺衍生物药物/基因载体的合成和应用,化学进展,2016.8.26(08)1196~1206.

33. X.-L. Jiang*H. Liu, G.-D. Zhou, Y.-P. Feng, W. Fang, X. Long, R.-X. Zhuo,Thermosensitive injectable modified chitin hydrogel for cell delivery4th Symposium on Innovative Polymers for Controlled Delivery (SIPCD), J. Control. Release 2017, 259, E161-E162

34. Q.-M. Jiang, Y.-T. Zhang, R.-X. Zhuo, X.-L. Jiang,Light and redox dual sensitive supramolecular self-assembly system based on branched polycations for gene delivery4th Symposium on Innovative Polymers for Controlled Delivery (SIPCD) J. Control. Release 2017, 259, E110

35. W.-T. Kang, B. Bi, R.-X. ZhuoX.-L. Jiang, Photocrosslinked methacrylated carboxymethyl chitin hydrogels with tunable degradation and mechanical behaviorCarbohydr. Polym.2017, 160, 18-25.

36. Y.-Z. Wei Y.-F. ChuE. UliyanchenkoP. J. SchoenmakersR.-X. ZhuoX.-L. Jiang, Separation and characterization of benzaldehyde functional polyethylene glycols by liquid chromatography under critical conditionsPolym. Chem.2016, 7, 7506-7513.

37. Q.-M. Jiang, Y.-T. Zhang, R.-X. Zhuo, X.-L. Jiang, Light and reduction dual sensitive supramolecular self-assembly gene delivery system based on poly(cyclodextrin) and disulfide-containing azobenzene-terminated branched polycations, J. Mater. Chem. B, 2016, 4, 7731-7740.

38. J. Liu, W. E. Hennink, M. J. van Steenbergen, R.-X. Zhuo, X.-L. Jiang, A facile modular approach toward multifunctional supramolecular polyplexes for targeting gene delivery, J. Mater. Chem. B, 2016, 4, 7022-7030.

39. Y.-Z. Wei, R.-X. Zhuo, X.-L. Jiang, Separation of polyethylene glycols and maleimide-terminated polyethylene glycols by reversed-phase liquid chromatography under critical conditions, J. Sep. Sci. 2016, 39(22), 4305-4313.

40. X. Du, Y.-B. Jiang, R.-X. Zhuo, X.-L. Jiang, Thermosensitive and photocleavable polyaspartamide derivatives for drug delivery, J. Polym. Sci., Part A: Polym. Chem. 2016, 54, 2855-2863.

41. Q.-M. Jiang, Y.-T. Zhang, R.-X. Zhuo, X.-L. Jiang, Supramolecular host-guest polycationic gene delivery system basedon poly(cyclodextrin) and azobenzene-terminated polycations, Colloid Surfaces B, 2016, 147, 25-35.

42. J. Liu, L.-M. Xu, Y. Jin, C. Qi, Q.-L. Li, Y.-T. Zhang, X.-L. Jiang, G.-B. Wang, Z. Wang, L. Wang, Cell-targeting cationic gene delivery system based on a modular design rationale, ACS Appl. Mater. Interfaces 2016, 8, 14200-14210.

43. J. Liu, C. Qi, K.-X. Tao, J.-X. Zhang, J. Zhang, L.-M. Xu, X.-L. Jiang, Y.-T. Zhang, L. Huang, Q.-L. Li, H.-J. Xie, J.-B. Gao, X.-M. Shuai, G.-B. Wang, Z. Wang, L. Wang, Sericin/dextran injectable hydrogel as an optically trackable drug delivery system for malignant melanoma treatment, ACS Appl. Mater. Interfaces 2016, 8, 6411-6422.

44. Y.-Z. Wei, R.-X. Zhuo, X.-L. Jiang*, Separation of polyethylene glycols and amino-terminatedpolyethylene glycols by high-performance liquid chromatographyunder near critical conditions. J Chromatogr. A, 2016, 1447, 122-128.

45. J. Liu, W.E. Hennink, M. van Steenbergen, R.-X. Zhuo, X.-L. Jiang* Versatile supramolecular gene vector based on host-guest interaction, Bioconjugate Chem.2016, 27N4, 1143-1152.

46. H. Liu, J. Liu, C. Qi, Y.-P. Fang, L.-N. ZhangR.-X. Zhuo, X.-L. Jiang* Thermosensitive injectable in-situ forming carboxymethyl chitin hydrogel for three-dimensional cell culture Acta Biomaterialia, 2016, 35, 228-237.

47. Y.-Y. Ma, G.-Y. Zhang, L.-J., H. Yu, J. Liu, C.-Q. Wang, Y.-F. Chu, R.-X. Zhuo, and X.-L. Jiang*Temperature and pH Dual-Sensitive Polyaspartamide Derivatives for Antitumor Drug Delivery J. Polym. Sci., Part A: Polym. Chem. 2016, 54, 879-888.

48. H. Liu, Q.-Z. Yang, L.-N. Zhang, R.-X. Zhuo, X.-L. Jiang*, Synthesis of carboxymethyl chitin in aqueous solution and its thermo- and pH-sensitive behaviors, Carbohydr. Polym., 2016, 137, 600-607.

49. H. Yu, J. Sun, Y.-T. Zhang, G.-Y. Zhang, Y.-F. Chu, R.-X. Zhuo, X.-L. Jiang* pH- and β-cyclodextrin-responsive micelles based on polyaspartamide derivatives as drug carrierJ. Polym. Sci., Part A: Polym. Chem. 2015, 53(11), 1387-1395

50. J. Liu, X.-L. Jiang*, W. E. Hennink, R.-X. Zhuo, A modular approach toward multifunctional supramolecular nanopolyplexes for targeting gene delivery, J. Control. Release, 2015, 213, e123-e124

51. G.-Y. Zhang, H. Yu, Y.-T. Zhang, R.-X. Zhuo, X.-L. Jiang*, pH and thermo dual-responsive polyaspartamide derivatives by click chemistry for drug delivery, Journal of Controlled Release, 2015213e34-e35

52. G.-Y. Zhang, Y.-T. Zhang, Y.-F. Chu, Y.-Y. Ma, R.-X. Zhuo, and X.-L. Jiang* Facile synthesis of thermosensitive functional polyaspartamide derivatives by click chemistryJ Polym Sci Part A: Polym Chem, 2015, 53(10), 1296-1306.

53. Y.-F. Chu, H. Yu, Y.-T. Zhang, G.-Y. Zhang, Y.-Y. Ma, R.-X. Zhuo, X.-L. Jiang*, Synthesis and characterization of biodegradable amphiphilic ABC Y-shaped miktoarm terpolymer by click chemistry for drug delivery, J Polym Sci A201452(23), 3346-3355.

54. Y.-Y. Ma, X.-L. Jiang*, R.-X. Zhuo, Biodegradable and thermosensitive polyaspartamide derivatives bearing aromatic structures, Materials Letters, 2014, 121, 78-80.

55. Y.-F. Chu, H. Yu, Y.-Y. Ma, Y.-T. Zhang, G.-Y. Zhang, H. Wei, R.-X. Zhuo, X.-L. Jiang*Synthesis and Characterization of Biodegradable pH and Reduction Dual-sensitive Polymeric Micelles for Intracellular Doxorubicin DeliveryJ Polym Sci A201452(13), 1771-1780.

56. 黄果,蒋序林*,热敏性可降解高分子胶束药物载体的研究进展,高分子通报,2014,(2),61-68.

57. J. Liu, Y.-L. Xu, Q.-Z. Yang, C. Li, W. E. Hennink, R.-X. Zhuo, X.-L. Jiang*, Reduction Biodegradable Brushed PDMAEMA Derivatives Synthesized by ATRP and Click Chemistry for Gene Delivery, Acta Biomater, 2013, 9, 7758-7766.

58. Y.-Y. Ma, X.-L. Jiang*, R.-X. Zhuo, Biodegradable and Thermosensitive Micelles of Amphiphilic Polyaspartamide Derivatives Containing Aromatic Groups for Drug Delivery, J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 3917-3924.

59. X.-G. Huang, X.-L. Jiang*,Q.-Z. Yang, Y.-F. Chu, G.-Y. Zhang, B. Yang and R.-X. Zhuo, Triple-stimuli (pH/thermo/reduction) sensitive copolymers for intracellular drug delivery, J. Mater. Chem. B, 2013,1, 1860-1868.

60. X.-G. Huang, Q.-Z. Yang, Y.-F. Chu, G.-Y. Zhang,  B. Yang, R.-X. Zhuo, X.-L. Jiang*Thermo-, pH and reduction-responsive block copolymers for drug deliveryJ. Control. Release, 2013, 172(1), e62.

61. G.-Y. Zhang, X.-L. Jiang*, J. Liu, Q.-Z. Yang, R.-X. ZhuoReduction-degradable brushed polyethylenimine derivative synthesized by click chemistry for gene delivery, J. Control. Release, 2013, 172(1), e118-e119.

62. G.-Y. Zhang, J. Liu, Q.-Z. Yang, R.-X. Zhuo, and X.-L. Jiang*, Disulfide-Containing Brushed Polyethylenimine Derivative Synthesized by Click Chemistry for Nonviral Gene Delivery, Bioconjugate Chem. 2012, 23, 1290-1299.

63. X.-G. Huang, X.-L. Jiang*, R.-X. Zhuo, Microwave-assisted solid-phase synthesis of pH-responsive polyaspartamide derivatives, Carbohydrate Polymers, 2012, 89,788-794.

64. X.-L. Jiang*, L.-H. Li, J. Liu, W. E. Hennink, R.X. ZhuoFacile Fabrication of Thermo-Responsive and Reduction-Sensitive Polymeric Micelles for Anticancer Drug Delivery, Macromol. Biosci. 2012, 12, 703-711.

65. X.-L. Jiang*, Y.-F. Chu, J. Liu, G.-Y. Zhang and R.-X. ZhuoAqueous SEC Analysis of Cationic Polymers ass Gene CarriersChinese Journal of Polymer Science 2011, 29(4), 421-426

66. X.-L. Jiang*, L.-H. Li, J. Liu, R.-X. Zhuo, Reduction-responsive polymeric micelles for anticancer drug delivery, J. Control. Release, 2011, 152 S1, e36-e37.

67. J. Liu, L. Xu, X.-L. Jiang*, W. E. Hennink, X.-M. Wang, R.-X. Zhuo, Disulfide-containing cross-linked PEI derivative synthesized by click chemistry for non-viral gene delivery, J. Control. Release, 2011, 152, S1, e157-e159

68. Y. Chen, L.-Z. Zhou, Y. Pang, W. Huang, F. Qiu, X.-L. Jiang, X.-Y. Zhu, D.-Y. Yan, and Q. Chen, Photoluminescent Hyperbranched Poly(amido amine) Containing β-Cyclodextrin as a Nonviral Gene Delivery, Bioconjugate Chem. 2011, 22, 1162-1170.

69. X.-L. Jiang, J. Liu, L. Xu, R.-X. ZhuoDisulfide-Containing Hyperbranched Polyethylenimine Derivative via Click Chemistry for Nonviral Gene DeliveryMacromol. Chem. Phys. 2011, 212, 64-71.

70. 杨奇志, 刘佳, 蒋序林*, 点击化学在生物医用高分子中的应用,化学进展, 2010, 22 (12): 2337-2347.

71. J. Liu, X.-L. Jiang, L. Xu, X.-M. Wang, W. E. Hennink, R.-X. ZhuoNovel Reduction-Responsive Cross-Linked Polyethylenimine Derivatives by Click Chemistry for Nonviral Gene Delivery, Bioconjugate Chem. 2010, 21(10), 1827-1835.

72. 钟亚兰,蒋序林*,高效液相色谱表征高聚物,化学进展, 2010224, 706-712.

73. R.-B Wang, L.-Z. Zhou, Y.-F. Zhou, G.-L. Li, X.-Y. Zhu, H.-C. Gu, X.-L. Jiang, H.-Q. Li, J.-L. Wu, L. He, X.-Q. Guo, B.-S. Zhu, and D.-Y. Yan, Synthesis and Gene Delivery of Poly(amido amine)s with Different Branched Architecture, Biomacromolecules 2010, 11, 489-495.

74. L.-H. Li, X.-L. Jiang*, R.-X. Zhuo, Synthesis and Characterization of Thermoresponsive Polymers Containing Reduction-Sensitive Disulfide Linkage, J Polym Sci Part A: Polym Chem 2009, 47: 5989–5997.

75. H. Wan, Y. Chen, L. Chen, X. Zhu, D. Yan, B. Li, T. Liu, L. Zhao, X. Jiang, G. Zhang, Supramolecular Control of the Branched Topology of Poly(sulfone-amine) from Divinylsulfone and Hexamethylenediamine, Macromolecules, 2008, 41(2), 465-470

76. J. Xue, L. Zhou, P. He, X.-Y. Zhu, D.-Y. Yan and X.-L. Jiang, “Supramolecular End-Group Separation of Linear Polymers with Different Terminals through Host-Guest Interaction”, J. Incl. Phenom. Macrocycl. Chem., 2008, 61, 83-88.

77. C. Lin, Z. Zhong, M.C. Lok, X.-L. Jiang, W. E Hennink, J. Feijen, J. F. J. Engbersen, Random and block copolymers of bioreducible poly(amido amine)s with high- and low-basicity amino groups: study of DNA condensation and buffer capacity on gene transfection, J Controlled Release, 2007, 123, 67-75.

78. X.-L, Jiang, M. C. Lok, C. F. van Nostrum, W. E. Hennink, “Degradable-Brushed pHEMA-pDMAEMA Synthesized via ATRP and Click Chemistry for Gene Delivery”, Bioconjugate Chem., 2007, 18(6), 2077-2084.

79. C. Lin, Z.-Y. Zhong, M. C. Lok, X.-L. Jiang, W. E. Hennink, J. Feijen, J. F. J. Engbersen, “Novel Bioreducible Poly(amido amine)s for Highly Efficient Gene Delivery”, Bioconjugate Chem., 2007, 18(1), 138 – 145.

80. K. D. F. Vlugt-Wensink, X.-L.Jiang, G. Schotman, G. Kruijtzer, A. Vredenberg, J.T. Chung, Z. Zhang, C. Versluis, D. Ramos, R. Verrijk, W. Jiskoot, D. J. A. Crommelin, W. E. Hennink, “In Vitro Degradation Behavior of Microspheres Based on Cross-Linked Dextran”, Biomacromolecules, 2006, 7(11), 2983-2990.

81. X. Jiang, A. van der Horst, M.J. van Steenbergen, N. Akeroyd, C.F. van Nostrum, P.J. Schoenmakers and W.E. Hennink, “Aqueous size-exclusion chromatography of cationic polymers for gene delivery”, J. Controlled Release, 2006, 116(2), e69-e71.

82. C. Hiemstra, Z.Y. Zhong, X. Jiang, W.E. Hennink, P.J. Dijkstra and J. Feijen, “PEG–PLLA and PEG–PDLA multiblock copolymers: Synthesis and in situ hydrogel formation by stereocomplexation”, J. Controlled Release, 2006, 116(2), e17-e19.

83. C. Lin, Z.Y. Zhong, M.C. Lok, X.-L. Jiang, W.E. Hennink, J. Feijen and J. F.J. Engbersen“Linear poly(amido amine)s with secondary and tertiary amino groups and variable amounts of disulfide linkages: Synthesis and in vitro gene transfer properties”, J. Controlled Release, 2006, 116(2), 130-137.

84. X.-L, Jiang, A. van der Horst, M. J. van Steenbergen, C. F. van Nostrum, P. J. Schoenmakers, W. E. Hennink, “Molar-Mass Characterization of Cationic Polymers for Gene Delivery by Aqueous SEC with Online Multi-Angle Light Scattering Detection”, Pharmaceut. Res., 200623(3), 595-603..

85. X.-L, Jiang, A. van der Horst, V. Lima, P. J. Schoenmakers, “Comprehesive Two-Dimentional Liquid Chromatography for the Characterization of Functional Acrylate Polymers”, J. Chromatogr. A, 2005, 1076(1-2), 51-61.

86. V. Lima V, X.-L. Jiang, J. Brokken-Zijp, P. J. Schoenmakers, B. Klumperman, R. Van Der Linde, “Synthesis and characterization of telechelic polymethacrylates via RAFT polymerization”m, J. Polym. Sci.: Polym. Chem., 2005, 43(5), 959-973.

87. X.-L. Jiang, P. J. Schoenmakers, X.-W. Lou, V. Lima, J. L. J. van Dongen, and  J. Brokken-Zijp, “Separation and Characterization of Functional Poly(n-Butyl Acrylate) by Critical Liquid Chromatography”, J. Chromatogr. A, 2004, 1055(1-2), 123-133.

88. H.-Q. Zhang, X.-L. Jiang, R. van der Linde, “Synthesis of Hydroxyl End-Capped Telechelic Polymers with Poly(Methyl Methacrylate)-block-Poly(n-Butyl Acrylate) Backbones via Atom-Transfer Radical Polymerisation”, Polymer, 2004, 45 (5), 1445-1466.

89. X.-L. Jiang, P. J. Schoenmakers, J. L.M van Dongen, X.W. Lou, V. Lima, J. Brokken-Zijp, “Mass-Spectrometric Characterization of Functional Poly(Methyl Methacrylate) in Combination with Critical Liquid Chromatography”, Anal. Chem., 2003, 75(20), 5517-5524.

90. X.-L. Jiang, V. Lima, P. J. Schoenmakers, “Robust Isocratic Liquid Chromatography Separation of Functional Poly(Methyl Methacrylate)”, J. Chromatogr. A, 2003, 1018(1), 19-27.

91. X.-L. Jang, A. van der Horst, P. J. Schoenmakers, “Breakthrough of Polymers in Interactive Liquid Chromatography”,  J. Chromatogr. A, 2002, 982 (1), 55-68.

92. J.-Y. Li, D.-Y. Yan, X.-L. Jiang, Q. Chen, “Formation of the Crystalline Inclusion Complex between Gamma-Cyclodextrin and Poly(N-acetylethylenimine)”, Polymer, 2002, 43, 2625-2629.

93. 夏平 蒋序林  颜德岳, “耐热性星型甲基丙烯酸甲酯基共聚物的合成”,高等学校化学学报,2002. 23(2), 336-338.

94. W.-X. Wang, D.-Y. Yan, X.-L. Jiang, C. Detrembleur, P. Lecomte, R. Jérôme, “Reverse Atom-Transfer Radical Polymerization at Room Temperature”, Macromol. Rapid Commun. 2001, 22, 439-443.

95. P. Xia, Q.-S. Hu, X.-L. Qian, X.-L. Jiang, D.-Y. Yan, “Simultaneous Measurement of Free Rdical Decay in Polymerization of MMA Initiated by AIBN Using ESR and Its Kinetic Model”, Chinese J. Polym. Sci. 2001, 19 (1), 33-38.  

96. X.-L. Jiang, P. Xia, D.-Y. Yan, W.-L. Liu, “Atom Transfer Radical Copolymerization of Styrene and N-cyclohexylmaleimide”, J. Polym. Sci.: Polym. Chem., 2000, 38(8), 1203.

97. X.-L. Jiang, D.-Y. Yan, Y.-L. Zhong, W.-L. Liu, and Q.-X. Chen. “Atom Transfer Radical Copolymerization of MMA and N-cyclohexylmaleimide”, Polym. Int., 2000, 49, 893-897.

98. X.-L. Jiang, Y.-L. Zhong, D.-Y. Yan, and H. Yu, “Hyperbranched Copolymers of p-(Chloromethyl)styrene and N-Cyclohexylmaleimide Synthesized by ATRP”, J. Appl. Polym. Sci., 2000, 78(11), 1992-1997.

99. 蒋序林  颜德岳  刘万里, “原子转移自由基聚合(ATRP)合成耐热性共聚物”,高等学校化学学报,2000. 21(10), 1613-1615.

100. 李勇进  颜德岳  朱新远  蒋序林, “尼龙1012 的Brill转变”,高等学校化学学报,2000. 21(6), 983-984.

101. 蒋序林, 钟亚兰, 易新文, 颜德岳, 酚醛树脂乳液的合成及在摩擦材料中的应用,高分子材料科学与工程, 2000, 16(5), 173-175.

102. X.-L. Jiang, H.-Y. Tai, P. Xia, D.-Y. Yan, “Kinetics for Copolymerization of Methyl Methacrylate with N-Cyclohexylmaleimide”, J. Appl. Polym. Sci. 1999, 74(5), 1293.

103. X.-L. Jiang, D.-Y. Yan, X.Y. Zhu, J. Lin, “Radical Copolymerization between Methyl Methacrylate and N-cyclohexylmaleimide with Thiol as an Inifer”, J. Appl. Polym. Sci., 1999, 74(6), 1417.

104. 术专著C. XieW. HuangW.-Q.Sun, X.-L. Jiang*, Injectable polymeric gels based on chiyosan and chitin for biomedical applications in Handbook of Chitin and Chitosan v3 (Chitin- and Chitosan-based Polymer Materials for Various Applications) Pp 281-306, Elsevier 2020-06..

 

授权专利:

1. 蒋序林, 李丽花, 卓仁禧, 还原敏感性的两亲性嵌段共聚物及其胶束,2011.9, 中国发明专利, ZL200910273157.0.

2. 蒋序林, 刘佳, 徐丽, 卓仁禧, 还原敏感性聚乙烯亚胺衍生物及其制备方法和应用,2012.7, 中国发明专利, ZL201010154628.9.

3. 蒋序林, 刘佳, 张光彦,杨奇志,卓仁禧,可还原降解的梳型高分子基因载体及其制备方法,2013.3, 中国发明专利, ZL201110020684.8.

4. 蒋序林, 马颖颖, 余欢,卓仁禧, 多功能可降解聚天冬酰胺改性聚合物载药胶束及其制备方法,2014.11, 中国发明专利, ZL201210585852.2.

5. 蒋序林,刘慧,杨奇志,卓仁禧 ,一种均相制备低脱乙酰度羟丙基改性甲壳素的方法,2016.1, 中国发明专利, ZL201410170871.8,(该项已申请PCT

6. 蒋序林刘慧,杨奇志,卓仁禧 ,一种均相制备低脱乙酰度羧基甲壳素的方法及其应用,2017. 1, 中国发明专利, ZL201310641249.6.

7. 蒋序林,黄佳昌 ,一种可注射高强度甲壳素基水凝胶及其制备方法和应用,2019. 10, 中国发明专利, ZL201710766653.4.

8. 蒋序林,毕波,袁蒙,黄佳昌,中国专利公开部分CN20180108226.1,可注射高强度温敏性改性甲壳素基水凝胶及其制备方法和应用,申请日:2018.2.2,授权公告日:2021.8.3.

9. 蒋序林,马梦思,钟亚兰,ZL201910768980.2-一种可注射含单宁酸的温敏复合抗菌水凝胶材料及其制备和应用, 申请日:2019.8.20,授权公告日:2021.7.6.

10. 蒋序林,李家振,ZL202010298540.8,一种甲壳素衍生物中蛋白质含量的测定方法, 申请日:2020.4.16,中国发明专利授权公告日:2021.9.14.

11. 蒋序林,赵勇,李家振,ZL202010324043.0,一种羧甲基甲壳素多孔颗粒材料、制备方法及用途申请日:2020.4.22,授权日:2021.5.18.

12. 蒋序林,黄龙,黄佳昌,ZL2021115335953,AIE功能化可荧光示踪的改性甲壳素材料、制备方法和应用,申请日:2021.12.15,授权日:2022.9.5.

中国专利申请:

1. 蒋序林,乔芊芊,郑洁玉,钟亚兰,CN202110437908.9,一种温敏改性甲壳素水凝胶载局部麻药缓释镇痛体系、制备方法及应用,申请日:2021.4.22.

2. 蒋序林,马梦思,CN202110609013.9,一种温敏改性甲壳素水凝胶关节腔注射剂及其制备方法和应用,申请日:2021.6.1.

3. 蒋序林,吕思瑶,CN2021113339095,一种羧甲基甲壳素止血海绵材料、制备方法和应用,申请日:2021.11.11.

4. 蒋序林,冷帆,CN2021113338849,一种羧甲基甲壳素微球栓塞剂及其制备方法和应用,申请日:2021.11.11.

5. 蒋序林,蔡明真,CN2022100938539,季铵化改性温敏甲壳素材料及其制备方法和应用, 申请日:2022.1.26

6. 蒋序林,马梦思,CN2020110722442,一种具有良好光热效应的温敏复合抗菌水凝胶及其使用方法和应用,申请日:2020.10.09.

7. 蒋序林,乔芊芊,李涛涛,杨帆,CN2022104578208,一种温敏性改性甲壳素海绵载药植入缓释体系及其制备方法和应用,申请日:2022.4.27.








中国医药卫生文化协会生物医药材料专业委员会委员

  • [1].1. 可控高分子的合成、改性及共轭技术的研究
     2. 基因药物用新型可降解高分子载体的研究
     3. 热敏性可降解高分子药物靶向载体研究(抗肿瘤药物、多肽蛋白质药物)
     4. 温敏性可注射可降解高分子水凝胶载体(多肽蛋白细胞)的研究
     5. HPLC分离与表征功能高分子
  • 邮编:
  • 传真:
  • 通讯/办公地址:
  • 办公室电话:
  • 移动电话:
  • 邮箱: