廖灵敏

微信扫描

当前位置: 中文主页 > 科学研究 > 研究领域

Seminar on Analysis and Probability 

(武汉大学-华中师范大学联合分析与概率讨论班)


时间:每周三上午10:00-12:00

地点:武汉大学,华中师范大学轮流


已经举办的:

  • 2023年2月3日:史汝西(巴黎六大)

题目:Zero-dimensional and Symbolic Extensions of Topological Flows 

摘要:The theory of symbolic extensions for discrete dynamical systems was investigated by M. Boyle and T. Downarowicz (2004). We develop the theory of symbolic extensions in the setting of topological flows. We also study the symoblic extensions under the orbit equivalence for regular topological flows. If time permits, I will also talk about the symbolic extensions for singular suspension flows. This is the joint work with David Burguet.






即将到来的:

2023年3月22日:侯晓博(复旦大学)

题目:Multi-horseshoe dense property and intermediate entropy property of ergodic measures with same level

时间: 2023年3月22日星期三 10:00-11:30

地点:华中师范大学 6号楼数统学院 323会议室

摘要:Katok conjectured that for every $C^{2}$ diffeomorphism $f$ on a Riemannian manifold $X$, the set $\{h_{\mu}(f):\mu \text{ is an ergodic measure for } (X,f)\}$ includes $[0, \htop(f))$. In this paper, we obtained a refined Katok's conjecture on intermediate metric entropies of ergodic measures with same level that for a transitive locally maximal hyperbolic set or a transitive two-sided subshift of finite type,  one has $$\mathrm{Int}(\{(\int \varphi d\mu, h_\mu(f)):\mu\in M(f,X)\})=\mathrm{Int}(\{(\int \varphi d\mu, h_\mu(f)):\mu\in M_{erg}(f,X)\}).$$ for any continuous function $\varphi$.  In this process, we establish 'multi-horseshoe' entropy-dense property and use it to get the goal combined with conditional variational principles. This is joint work with Yiwei Dong and Xueting Tian.


2023年3月29日:王保伟(华中科技大学)