苏科华
Supervisor of Doctorate Candidates
Supervisor of Master's Candidates
E-Mail:
Date of Employment:2008-11-02
School/Department:计算机学院
Education Level:研究生毕业
Business Address:D203
Gender:Male
Contact Information:13517299596
Status:Employed
Discipline:Computer Applications Technology
Communications and Information Systems
Other specialties in Software Engineering
Cyberspace Security
Hits:
Impact Factor:1.5
DOI number:10.1016/j.cagd.2018.10.005
Affiliation of Author(s):ELSEVIER
Journal:COMPUTER AIDED GEOMETRIC DESIGN
Place of Publication:RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS
Key Words:Optimal Mass Transportation;Monge-Ampere;GAN;Wasserstein distance
Abstract:In this work, we give a geometric interpretation to the Generative Adversarial Networks (GANs). The geometric view is based on the intrinsic relation between Optimal Mass Transportation (OMT) theory and convex geometry, and leads to a variational approach to solve the Alexandrov problem: constructing a convex polytope with prescribed face normals and volumes. By using the optimal transportation view of GAN model, we show that the discriminator computes the Wasserstein distance via the Kantorovich potential, the generator calculates the transportation map. For a large class of transportation costs, the Kantorovich potential can give the optimal transportation map by a close-form formula. Therefore, it is sufficient to solely optimize the discriminator. This shows the adversarial competition can be avoided, and the computational architecture can be simplified. Preliminary experimental results show the geometric method outperforms the traditional Wasserstein GAN for approximating probability measures with multiple clusters in low dimensional space. (C) 2018 Elsevier B.V. All rights reserved.
Co-author:Cui Li,Yau Shing-Tung,Gu Xianfeng
First Author:Lei Na
Indexed by:Article
Correspondence Author:Su Kehua
Document Type:J
Volume:68
Page Number:1-21
ISSN No.:0167-8396
Translation or Not:no
Date of Publication:2019-01-01
Included Journals:SCI、EI
苏科华,男,武汉大学计算机学院教授、博导;武汉大学科技成果转化中心(技术转移中心)副主任。研究主要集中在最优传输(Optimal Transport)领域,它是研究概率测度间最优变换的一类优化问题。在计算机图形学、机器视觉、人工智能、医学图像处理等领域有着广泛的应用。本人主要研究最优传输的几何计算理论和高效算法,并将其应用于网格保测参数化、三维场景优化、智能烧伤评估和卫星互联网任务优化中。主持包括国家自然科学基金、中央军科委、航天5院、华为公司等20多个项目支持,发表论文50余篇,获批发明专利10余项。为CCF计算机辅助设计与图形学(CAD/CG)和虚拟现实与可视化(TCVRV)专委会的执行委员。