苏科华

Supervisor of Doctorate Candidates  
Supervisor of Master's Candidates

E-Mail:

Date of Employment:2008-11-02

School/Department:计算机学院

Education Level:研究生毕业

Business Address:D203

Gender:Male

Contact Information:13517299596

Status:Employed

Discipline:Computer Applications Technology
Communications and Information Systems
Other specialties in Software Engineering
Cyberspace Security


Paper Publications

Burn image segmentation based on Mask Regions with Convolutional Neural Network deep learning framework: more accurate and more convenient

Hits:

Impact Factor:5.3

DOI number:10.1186/s41038-018-0137-9

Affiliation of Author(s):OXFORD UNIV PRESS

Journal:BURNS & TRAUMA

Place of Publication:GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND

Key Words:Burn image;Deep learning;Mask R-CNN;Image segmentation

Abstract:BackgroundBurns are life-threatening with high morbidity and mortality. Reliable diagnosis supported by accurate burn area and depth assessment is critical to the success of the treatment decision and, in some cases, can save the patient's life. Current techniques such as straight-ruler method, aseptic film trimming method, and digital camera photography method are not repeatable and comparable, which lead to a great difference in the judgment of burn wounds and impede the establishment of the same evaluation criteria. Hence, in order to semi-automate the burn diagnosis process, reduce the impact of human error, and improve the accuracy of burn diagnosis, we include the deep learning technology into the diagnosis of burns.MethodThis article proposes a novel method employing a state-of-the-art deep learning technique to segment the burn wounds in the images. We designed this deep learning segmentation framework based on the Mask Regions with Convolutional Neural Network (Mask R-CNN). For training our framework, we labeled 1150 pictures with the format of the Common Objects in Context (COCO) data set and trained our model on 1000 pictures. In the evaluation, we compared the different backbone networks in our framework. These backbone networks are Residual Network-101 with Atrous Convolution in Feature Pyramid Network (R101FA), Residual Network-101 with Atrous Convolution (R101A), and InceptionV2-Residual Network with Atrous Convolution (IV2RA). Finally, we used the Dice coefficient (DC) value to assess the model accuracy.ResultThe R101FA backbone network gains the highest accuracy 84.51% in 150 pictures. Moreover, we chose different burn depth pictures to evaluate these three backbone networks. The R101FA backbone network gains the best segmentation effect in superficial, superficial thickness, and deep partial thickness. The R101A backbone network gains the best segmentation effect in full-thickness burn.ConclusionThis deep learning framework shows excellent segmentation in burn wound and extremely robust in different burn wound depths. Moreover, this framework just needs a suitable burn wound image when analyzing the burn wound. It is more convenient and more suitable when using in clinics compared with the traditional methods. And it also contributes more to the calculation of total body surface area (TBSA) burned.

Co-author:Xie Weiguo,Ye Ziqing

First Author:Jiao Chong

Indexed by:Article

Correspondence Author:Su Kehua

Document Type:J

Volume:7

ISSN No.:2321-3868

Translation or Not:no

Date of Publication:2019-03-12

Included Journals:SCI

Profile

苏科华,男,武汉大学计算机学院教授、博导;武汉大学科技成果转化中心(技术转移中心)副主任。研究主要集中在最优传输(Optimal Transport)领域,它是研究概率测度间最优变换的一类优化问题。在计算机图形学、机器视觉、人工智能、医学图像处理等领域有着广泛的应用。本人主要研究最优传输的几何计算理论和高效算法,并将其应用于网格保测参数化、三维场景优化、智能烧伤评估和卫星互联网任务优化中。主持包括国家自然科学基金、中央军科委、航天5院、华为公司等20多个项目支持,发表论文50余篇,获批发明专利10余项。为CCF计算机辅助设计与图形学(CAD/CG)和虚拟现实与可视化(TCVRV)专委会执行委员。