王冉

同专业博导

同专业硕导

微信扫描

  • 1
  • 博士生导师
  • 硕士生导师
  • 教师英文名称:Wang Ran
  • 电子邮箱:
  • 入职时间:2015-12-07
  • 学历:博士研究生毕业
  • 办公地点:武汉大学理学院西北楼309
  • 性别:男
  • 联系方式:rwang@whu.edu.cn
  • 在职信息:在职
  • 所属院系: 数学与统计学院
  • 学科: 概率论与数理统计

Ran Wang

School of Mathematics and Statistics,

Wuhan University

No. 299, Bayi Road, Wuchang District

Hubei, Wuhan, 430072, P.R. China.

Email: rwang"at"whu.edu.cn

 

 

Research Interests

 Stochastic Analysis: Large deviations, Stochastic Partial Differential Equations.

 

Education Experience

9/2009 to 6/2012   Ph.D. in Mathematics, Thesis Advisor: Professor Liming Wu  

                              School of Mathematics and Statistics,  Wuhan University

9/2007 to 7/2009    M.S. in Mathematics, Thesis Advisor: Professor Fuqing Gao,

                              School of Mathematics and Statistics, Wuhan University

9/2003 to 7/2007    B.S. in Statistics, School of Mathematics and Statistics,

Wuhan University

 

Professional Experience

 7/2016--- present    Associate Professor,  School of Mathematics and Statistics, Wuhan University

 7/2012---6/2016      Post-doctoral Researcher, School of Mathematical Sciences, University of Science and Technology of China

Grants

  1. National Natural Science Foundation of China (NSFC),  11871382, Large deviations of occupation and invariant measures for SPDEs 11871382, 1/2019--12/2022, 500, 000 RMB, Principal Investigator: Ran Wang.

  2. National Natural Science Foundation of China (NSFC),  11301498, Transport inequalities for stochastic partial differential equations, 1/2014--12/2016, 220, 000 RMB, Principal Investigator: Ran Wang.

 

Publications

 

  1. 1. (with X. Wang and L. Wu) Sanov's theorem in the Wasserstein distance: A necessary and sufficient condition. Statist. Probab. Lett.  80, 505-512, 2010.  

  2. 2. (with Y. Ma and L. Wu) Transportation-information inequalities for continuum Gibbs measures. Electron. Commun. Probab. 16, 600-613, 2011. 

  3. 3.(with L. Lemle and L. Wu) Uniqueness of Fokker-Planck equations for spin lattice systems (I): compact case. Semigroup Forum 86(3), 583-591, 2013. 

  4. 4. (with L. Lemle and L. Wu) Uniqueness of Fokker-Planck equations for spin lattice systems (II): Non-compact case. Science China Math. 57(1), 161-172, 2014. 

  5. 5. (with T. S. Zhang) Moderate deviations for stochastic reaction-diffusion equations with multiplicative noise. Potential Anal. 42, 99-113, 2015. 

  6. 6. (with J. L. Zhai and T. S. Zhang) A moderate deviation principle for 2-D stochastic Navier-Stokes equations. J. Differential Equations 258, 3363-3390, 2015. 

  7. 7. (with L. Xu) Asymptotics of the entropy production rate for d-dimensional Ornstein-Uhlenbeck processes. J. Stat. Phys. 160(5), 1336-1353, 2015. 

  8. 8. (with Y. Li and S. Zhang) Moderate deviations for a stochastic heat equation with spatially correlated noise. Acta Appl. Math. 139, 59-80, 2015. 

  9. 9. (with J. L. Zhai and T. S. Zhang) Exponential mixing for stochastic model of two-dimensional second grade fluids. Nonlinear Anal. 132, 196-213, 2016. 

  10. 10. (with Y. Ma and L. Wu) Log-Sobolev, isoperimetry and transport inequalities on graphs.  Acta Math. Sinica, English Series 32(10), 1221-1236, 2016. 

  11. 11. (with Y. Li, N. Yao and S. Zhang) A moderate deviation principle for stochastic Volterra equation. Statist. Probab. Lett. 122, 79-85, 2017. 

  12. 12. (with Y. Li, N. Yao and S. Zhang). Moderate deviations for a fractional stochastic heat equation with spatially correlated noise. Stoch. Dyn. 17, no. 4, 1750025, 23 pp, 2017. 

  13. 13. (with J. Xiong and L. Xu) Irreducibility of stochastic real Ginzburg-Landau equation driven by $\alpha$-stable noises and applications. Bernoulli 23(2), 1179-1201, 2017. 

  14. 14. (with L. Xu) Asymptotics for stochastic reaction-diffusion equation driven by subordinate Brownian motions, Stochastic Process. Appl. 128, 1772-1796, 2018. 

  15. 15. (with L. Cheng, R. Li and N. Yao) Moderate deviations for a stochastic wave equation in dimension three, Acta Appl. Math. 158, 67-85, 2018. 

  16. 16. (with Y. Ma)  Transportation cost inequalities for stochastic reaction-diffusion equations with L\'evy noises and non-Lipschitz reaction terms, Acta Math. Sin., Engl. Ser. 36 (2) 121–136, 2020. 

  17. 17. (with S. Hu)  Asymptotics of stochastic Burgers equation with jumps. Statist. Probab. Lett. 162 108770, 9 pp, 2020.

  18. 18. (with S. Shang) Transportation inequalities under uniform metric for a stochastic heat equation driven by time-white and space-colored noise. Acta Appl. Math. 170,  81–97, 2020.

  19. 19. (with J. Xiong and L. Xu) Large deviation principle of occupation measures for non-linear monotone SPDEs, Science China Math.  64(4), 799–822, 2021.

  20. 20. (with  X. Sun, L. Xu and X. Yang)  Large deviation for two-time-scale stochastic Burgers equation. Stoch. Dyn., 21(5), Paper No. 2150023, 37 pp, 2021.      

  21. 21.(with S. Zhang) Decompositions of stochastic convolution driven by a white-fractional Gaussian noise. Front. Math. China 16(4), 1063–1073, 2021. 

  22. 22. (with J. Zhai and S. Zhang) Large deviation principle for stochastic Burgers type equation with reflection. Commun. Pure Appl. Anal. 21 (1) 213–238, 2022. 

  23. 23. (with Y. Xiao)  Lower functions and Chung's LILs of the generalized fractional Brownian motion. J. Math. Anal. Appl. 514 (2), Paper No. 126320, 31 pp, 2022.

  24. 24. (with Y. Xiao) Exact Uniform Modulus of Continuity and Chung’s LIL for the Generalized Fractional Brownian Motion. J. Theor. Probab. 35, 2442–2479, 2022. 

  25. 25. (with B. Zhang) Large deviation principle for stochastic generalized Ginzburg-Landau equation driven by jump noise.  Acta Math. Sci. Ser. B (Engl. Ed.)  43B, 505-530, 2023.

  26. 26. (with B. Zhang)  Large deviation principle for reflected SPDE on infinite spatial domain. Stoch. Dyn.,   23(7),  2350051,  2023.

  27. 27. (with R. Li and B. Zhang ) A large deviation principle for the stochastic heat equation with general rough noise. J. Theor. Probab.,  37,  251-306, 2024.

  28. 28.  Analysis of the gradient for the stochastic fractional heat equation with spatially-colored noise in $R^d$. Discrete Contin. Dyn. Syst. (B), 29(6), 2769-2785, 2024. 

  29. 29. (with Y. Xiao)  Temporal properties of the stochastic fractional heat equation with spatially-colored noise. Theor. Probability and Math. Statist., 110, 121-142, 2024. 

2012-7····2016-6


数学与统计学院 | 中国科学技术大学 | 博士后、特任副研究员

2009-9····2012.6


武汉大学 | 概率论与数理统计 | 博士 | 研究生(博士)毕业

2007-9····2009.6


武汉大学 | 概率论与数理统计 | 硕士 | 研究生(硕士)毕业

2003-9····2007.6


武汉大学 | 统计学 | 学士 | 本科(学士)

  • 通讯/办公地址:
  • 邮箱: