English
中文
新闻网
中文官网
手机版
赵晓飞
同专业博导
同专业硕导
首页
科学研究
研究领域
论文成果
专利
著作成果
科研项目
科研团队
教学研究
教学资源
授课信息
教学成果
获奖信息
招生信息
学生信息
微信扫描
当前位置:
中文主页
>
科学研究
>
论文成果
论文成果
[1].
Fourier pseudospectral methods for the variable-order space fractional wave equations.
preprint.
2024.
[2].
On action ground states of defocusing nonlinear Schrodinger equations.
preprint.
2024.
[3].
Computing ground states of Bose-Einstein condensation by normalized deep neural network.
preprint.
2024.
[4].
Comparison of different discontinuous Galerkin methods based on various reformulations for genera....
Computer Physics Communications.
to appear. 2024.
[5].
Error estimate of a quasi-Monte Carlo time-splitting pseudospectral method for disordered nonline....
SIAM/ASA Journal on Uncertainty Quantification.
12 (1). 1-29. 2024.
[6].
Computing the action ground state for the rotating nonlinear Schrodinger equation.
SIAM Journal on Scientific Computing.
45 (2). A397--A426. 2023.
[7].
Numerical methods for some nonlinear Schrodinger equations in soliton management.
Journal of Scientific Computing.
95 (2). 61. 2023.
[8].
Gauge-Transformed Exponential Integrator for Generalized KdV Equations with Rough Data.
SIAM Journal on Numerical Analysis.
61 (4). 1689-1715. 2023.
[9].
Geometric two-scale integrators for highly oscillatory system: uniform accuracy and near conserva....
SIAM Journal on Numerical Analysis.
61 (3). 1246-1277. 2023.
[10].
An embedded exponential-type low-regularity integrator for mKdV equation.
SIAM Journal on Numerical Analysis.
60 (3). 999-1025. 2022.
[11].
Numerical integrators for dispersion-managed KdV equation.
Communications in Computational Physics.
311. 1180-1214. 2022.
[12].
A symmetric low-regularity integrator for nonlinear Klein-Gordon equation.
Mathematics of Computation.
91. 2215-2245. 2022.
[13].
Embedded exponential-type low-regularity integrators for KdV equation under rough data.
BIT Numerical Mathematics.
62. 1049-1090. 2022.
[14].
Derivative-free high-order uniformly accurate schemes for highly-oscillatory systems.
IMA Journal of Numerical Analysis.
42 (2). 1623–1644. 2022.
[15].
Pseudospectral methods with PML for nonlinear Klein-Gordon equations in classical and non-relativ....
Journal of Computational Physics.
448. 110728. 2022.
[16].
Numerical integrators for continuous disordered nonlinear Schrodinger equation.
Journal of Scientific Computing.
89. 40. 2021.
[17].
Optimal convergence of a second order low-regularity integrator for the KdV equation.
IMA Journal of Numerical Analysis.
to appear. 2021.
[18].
Error estimates of some splitting schemes for charged-particle dynamics under strong magnetic fie....
SIAM Journal on Numerical Analysis.
59 (4). 2075–2105. 2021.
[19].
A uniformly first-order accurate method for Klein-Gordon-Zakharov system in simultaneous high-pla....
Journal of Computational Physics.
428. 110064. 2021.
[20].
Low-regularity integrators for nonlinear Dirac equations.
Mathematics of Computation.
90. 189-214. 2021.
[21].
On the rotating nonlinear Klein-Gordon equation: non-relativistic limit and numerical methods.
SIAM Journal on Multiscale Modeling and Simulation.
18 (2). 999–1024. 2020.
[22].
Uniformly accurate methods for three dimensional Vlasov equations under strong magnetic field wit....
SIAM Journal on Scientific Computing.
42 (2). B520-B547. 2020.
[23].
On time-splitting methods for nonlinear Schrodinger equation with highly oscillatory potential.
ESAIM: Mathematical Modelling and Numerical Analysis.
2020.
[24].
Comparison of numerical methods for the nonlinear Klein-Gordon equation in the nonrelativistic li....
Journal of Computational Physics.
398. 108886. 2019.
[25].
Uniformly accurate methods for Vlasov equations with non-homogeneous strong magnetic field.
Mathematics of Computation.
88 (320). 2697-2736. 2019.
[26].
Multiscale Particle-in-Cell methods and comparisons for the long-time two-dimensional Vlasov-Pois....
Computer Physics Communications.
222. 136-151. 2018.
[27].
Numerical methods for the two-dimensional Vlasov–Poisson equation in the finite Larmor radius ap....
Journal of Computational Physics.
375. 619-640. 2018.
[28].
Uniformly Accurate Forward Semi-Lagrangian Methods for Highly Oscillatory Vlasov--Poisson Equatio....
SIAM Journal on Multiscale Modeling and Simulation.
(15). 723-744. 2017.
[29].
Uniformly accurate Particle-in-Cell method for the long time solution of the two-dimensional Vlas....
Journal of Computational Physics.
(346). 172-190. 2017.
[30].
Uniformly accurate multiscale time integrators for second order oscillatory differential equation....
BIT Numerical Mathematics.
57. 649-683. 2017.
[31].
A uniformly accurate (UA) multiscale time integrator Fourier pseudospectral method for the Klein....
Numerische Mathematik.
(135). 833-873. 2017.
[32].
A uniformly accurate multiscale time integrator spectral method for the Klein–Gordon–Zakharov s....
Journal of Computational Physics.
(327). 270-293. 2016.
[33].
A modulation equations approach for numerically solving the moving soliton and radiation solution....
Physica D: Nonlinear Phenomena.
320,. 77-88. 2016.
[34].
On multichannel solutions of nonlinear Schrödinger equations: algorithm, analysis and numerical e....
Journal of Physics A: Mathematical and Theoretical.
(48). 135201. 2015.
[35].
A Uniformly Accurate Multiscale Time Integrator Pseudospectral Method for the Klein--Gordon Equat....
SIAM Journal on Numerical Analysis.
(52). 2488-2511. 2014.
[36].
Optimal l∞ error estimates of finite difference methods for the coupled Gross-Pitaevskii equatio....
Sci. China Math.
(57). 2189-2214. 2014.
[37].
An Exponential Wave Integrator Sine Pseudospectral Method for the Klein--Gordon--Zakharov System.
SIAM Journal on Scientific Computing.
(35). A2903-A2927. 2013.
共37条 1/1
首页
上页
下页
尾页