赵晓飞

同专业博导

同专业硕导

微信扫描

当前位置: 中文主页 > 科学研究 > 论文成果

[1].  Fourier pseudospectral methods for the variable-order space fractional wave equations.  preprint.  2024. 
[2].  On action ground states of defocusing nonlinear Schrodinger equations.  preprint.  2024. 
[3].  Computing ground states of Bose-Einstein condensation by normalized deep neural network.  preprint.  2024. 
[4].  Comparison of different discontinuous Galerkin methods based on various reformulations for genera....  Computer Physics Communications.  to appear.  2024. 
[5].  Error estimate of a quasi-Monte Carlo time-splitting pseudospectral method for disordered nonline....  SIAM/ASA Journal on Uncertainty Quantification.  12 (1).  1-29.  2024. 
[6].  Computing the action ground state for the rotating nonlinear Schrodinger equation.  SIAM Journal on Scientific Computing.  45 (2).  A397--A426.  2023. 
[7].  Numerical methods for some nonlinear Schrodinger equations in soliton management.  Journal of Scientific Computing.  95 (2).  61.  2023. 
[8].  Gauge-Transformed Exponential Integrator for Generalized KdV Equations with Rough Data.  SIAM Journal on Numerical Analysis.  61 (4).  1689-1715.  2023. 
[9].  Geometric two-scale integrators for highly oscillatory system: uniform accuracy and near conserva....  SIAM Journal on Numerical Analysis.  61 (3).  1246-1277.  2023. 
[10].  An embedded exponential-type low-regularity integrator for mKdV equation.  SIAM Journal on Numerical Analysis.  60 (3).  999-1025.  2022. 
[11].  Numerical integrators for dispersion-managed KdV equation.  Communications in Computational Physics.  311.  1180-1214.  2022. 
[12].  A symmetric low-regularity integrator for nonlinear Klein-Gordon equation.  Mathematics of Computation.  91.  2215-2245.  2022. 
[13].  Embedded exponential-type low-regularity integrators for KdV equation under rough data.  BIT Numerical Mathematics.  62.  1049-1090.  2022. 
[14].  Derivative-free high-order uniformly accurate schemes for highly-oscillatory systems.  IMA Journal of Numerical Analysis.  42 (2).  1623–1644.  2022. 
[15].  Pseudospectral methods with PML for nonlinear Klein-Gordon equations in classical and non-relativ....  Journal of Computational Physics.  448.  110728.  2022. 
[16].  Numerical integrators for continuous disordered nonlinear Schrodinger equation.  Journal of Scientific Computing.  89.  40.  2021. 
[17].  Optimal convergence of a second order low-regularity integrator for the KdV equation.  IMA Journal of Numerical Analysis.  to appear.  2021. 
[18].  Error estimates of some splitting schemes for charged-particle dynamics under strong magnetic fie....  SIAM Journal on Numerical Analysis.  59 (4).  2075–2105.  2021. 
[19].  A uniformly first-order accurate method for Klein-Gordon-Zakharov system in simultaneous high-pla....  Journal of Computational Physics.  428.  110064.  2021. 
[20].  Low-regularity integrators for nonlinear Dirac equations.  Mathematics of Computation.  90.  189-214.  2021. 
[21].  On the rotating nonlinear Klein-Gordon equation: non-relativistic limit and numerical methods.  SIAM Journal on Multiscale Modeling and Simulation.  18 (2).  999–1024.  2020. 
[22].  Uniformly accurate methods for three dimensional Vlasov equations under strong magnetic field wit....  SIAM Journal on Scientific Computing.  42 (2).  B520-B547.  2020. 
[23].  On time-splitting methods for nonlinear Schrodinger equation with highly oscillatory potential.  ESAIM: Mathematical Modelling and Numerical Analysis.  2020. 
[24].  Comparison of numerical methods for the nonlinear Klein-Gordon equation in the nonrelativistic li....  Journal of Computational Physics.  398.  108886.  2019. 
[25].  Uniformly accurate methods for Vlasov equations with non-homogeneous strong magnetic field.  Mathematics of Computation.  88 (320).  2697-2736.  2019. 
[26].  Multiscale Particle-in-Cell methods and comparisons for the long-time two-dimensional Vlasov-Pois....  Computer Physics Communications.  222.  136-151.  2018. 
[27].  Numerical methods for the two-dimensional Vlasov–Poisson equation in the finite Larmor radius ap....  Journal of Computational Physics.  375.  619-640.  2018. 
[28].  Uniformly Accurate Forward Semi-Lagrangian Methods for Highly Oscillatory Vlasov--Poisson Equatio....  SIAM Journal on Multiscale Modeling and Simulation.  (15).  723-744.  2017. 
[29].  Uniformly accurate Particle-in-Cell method for the long time solution of the two-dimensional Vlas....  Journal of Computational Physics.  (346).  172-190.  2017. 
[30].  Uniformly accurate multiscale time integrators for second order oscillatory differential equation....  BIT Numerical Mathematics.  57.  649-683.  2017. 
[31].  A uniformly accurate (UA) multiscale time integrator Fourier pseudospectral method for the Klein....  Numerische Mathematik.  (135).  833-873.  2017. 
[32].  A uniformly accurate multiscale time integrator spectral method for the Klein–Gordon–Zakharov s....  Journal of Computational Physics.  (327).  270-293.  2016. 
[33].  A modulation equations approach for numerically solving the moving soliton and radiation solution....  Physica D: Nonlinear Phenomena.  320,.  77-88.  2016. 
[34].  On multichannel solutions of nonlinear Schrödinger equations: algorithm, analysis and numerical e....  Journal of Physics A: Mathematical and Theoretical.  (48).  135201.  2015. 
[35].  A Uniformly Accurate Multiscale Time Integrator Pseudospectral Method for the Klein--Gordon Equat....  SIAM Journal on Numerical Analysis.  (52).  2488-2511.  2014. 
[36].  Optimal l∞ error estimates of finite difference methods for the coupled Gross-Pitaevskii equatio....  Sci. China Math.  (57).  2189-2214.  2014. 
[37].  An Exponential Wave Integrator Sine Pseudospectral Method for the Klein--Gordon--Zakharov System.  SIAM Journal on Scientific Computing.  (35).  A2903-A2927.  2013. 
共37条  1/1 
首页上页下页尾页