• 其他栏目

    李石君

    • 博士生导师
    • 主要任职:武汉大学人工智能研究院数字经济赋能中心主任
    • 其他任职:湖北省公共财政和经济运行大数据工程技术研究中心副主任
    • 性别:男
    • 毕业院校:武汉大学
    • 所在单位:计算机学院
    • 入职时间: 1997-12-07
    • 学科: 计算机应用技术
    • 办公地点:武汉大学人工智能研究院
    • 联系方式:13986190968
    • 电子邮箱:

    访问量:

    开通时间:..

    最后更新时间:..

    Recommender systems based on multiple social networks correlation

    点击次数:

    DOI码:10.1016/j.future.2018.04.079

    所属单位:(1) Computer School, Wuhan University, Wuhan; 430072, China

    发表刊物:Future Generation Computer Systems

    摘要:As development of social networks, social recommendation method, an effective information filtering technology, based on sociology rule and network theory, has improved performance of recommendation system and cold start problem. For data deep fusion and diverse development of social platform, the social relationship between users becomes more and more complex. The complexity of multiple social networks challenges social recommendation. However, most existing social recommendation methods focus on single social network, and multi-layer recommendation methods ignore nonlinearity and coupling between different social relationships. To tackle these problems, we propose a probabilistic matrix factorization model for multiply social networks joint recommendation framework based on joint probability distribution. This model analyzes different types of classic social networks and distribution function of user preferences similarity. Then we present unified model of recommendation based on social networks, as well as extensible multiply social networks joint recommendation method. The experimental results demonstrate comparing with relevant social recommendation algorithms; our method performs better on some evaluation indexes such as accuracy and errors. © 2018 Elsevier B.V.

    合写作者: Shijun(1), Li, Wei(1),Yu

    是否译文:

    发表时间:2018-01-01