• 其他栏目

    李石君

    • 博士生导师
    • 主要任职:武汉大学人工智能研究院数字经济赋能中心主任
    • 其他任职:湖北省公共财政和经济运行大数据工程技术研究中心副主任
    • 性别:男
    • 毕业院校:武汉大学
    • 所在单位:计算机学院
    • 入职时间: 1997-12-07
    • 学科: 计算机应用技术
    • 办公地点:武汉大学人工智能研究院
    • 联系方式:13986190968
    • 电子邮箱:

    访问量:

    开通时间:..

    最后更新时间:..

    Graph regularized nonnegative matrix tri-factorization for overlapping community detection

    点击次数:

    DOI码:10.1016/j.physa.2018.09.093

    所属单位:(1) School of Computer Science, Wuhan University, Wuhan; 430072, China

    发表刊物:Physica A: Statistical Mechanics and its Applications

    摘要:Non-negative Matrix Factorization technique has attracted many interests in overlapping community detection due to its performance and interpretability. However, when adapted to discover community structure the intrinsic geometric information of the network graph is seldom considered. In view of this, we proposed a novel NMF based algorithm called Graph regularized nonnegative matrix tri-factorization (GNMTF) model, which incorporates the intrinsic geometrical properties of the network graph by manifold regularization. Moreover, by using three factor matrices we can not only explicitly obtain the community membership of each node but also learn the interaction among different communities. The experimental results on two well-known real world networks and a benchmark network demonstrate the effectiveness of the algorithm over the representative non-negative matrix factorization based method. © 2018 Elsevier B.V.

    合写作者: Wei(1), Yu, Hong(1), ShiJun(1), Li,Jin

    是否译文:

    发表时间:2019-01-01