- 博士生导师
- 硕士生导师
- 电子邮箱:
- 学历:研究生毕业
- 办公地点:电化学楼C210室
- 性别:男
- 在职信息:在职
- 所属院系: 化学与分子科学学院
- 学科:
物理化学
教育与研究经历
2003.9-2012.6 武汉大学化学与分子科学学院,本硕博
2012.7-2015.12 武汉大学化学与分子科学学院,讲师
2013.9-2015.9 美国西北太平洋国家实验室,博士后
2016.1-2020.9 武汉大学化学与分子科学学院,副教授,硕士生导师
2020.9-至今 武汉大学化学与分子科学学院,副教授,博士生导师
研究领域与兴趣
新型电化学储能材料与技术,如锂离子电池,钠离子电池,锂金属电池,二维材料等。目前已发表SCI论文90余篇,其中以通讯作者或第一作者身份发表50余篇,包括Nature Commun.,J. Am. Chem. Soc.,Angew. Chem.,Adv. Energy Mater.,ACS Energy Lett.,Nano Lett.等,论文共被引用15600余次,22篇入选ESI高被引论文,3篇入选ESI热点论文,H指数60.
https://scholar.google.com/citations?user=L4zISssAAAAJ&hl=en
学术荣誉与兼职
2015年 美国西北太平洋国家实验室Outstanding Performance Award
2017年 武汉大学珞珈青年学者
2019-2023年 爱思唯尔中国高被引学者 (能源/化学)
2020-2022年 《物理化学学报》青年编委
2020年 -至今《稀有金属》、《Rare Metals》青年编委
2022年-至今 《物理化学学报》编委
2024年-至今 《Energy Materials》、《Battery Energy》青年编委
教授课程
本科生-物理化学、物理化学实验
研究生-电极过程动力学、物理化学前沿与进展
科研项目
国家自然科学基金面上项目(22279093, 21773177,22075216)
国家自然科学基金青年项目(21303125)
湖北省自然科学基金面上项目(2017CFB614,2022CFB096)
学术论文
52. Xu, M.; Wu, C.; Ye, L.; Zhang, Y.; Zhang, C.; Hu, J.; Tan, R.; Gu, D.; Wang, X.; Fontaine, O.*; Zhan, C.*; Zhuang, L.; Ai, X.; Qian, J.* Direct regeneration of spent LiCoO2 black mass based on fluorenone-mediated lithium supplementation and energy-saving structural restoration. Adv. Energy Mater. 2024, 14, 202401197. https://doi.org/10.1002/aenm.202401197
51. Zhu, X.; Su, Z.; Tan, R.; Guo, C.*; Ai, X.; Qian, J.* Scalable Synthesis of Bilayer Graphene at Ambient Temperature. J. Am. Chem. Soc. 2024, 146 (9), 6388-6396. https://doi.org/10.1021/jacs.4c00975
50. Tan, R.; Zhang, J.; Liu, K.; Zhu, X.; Gao, R.; Zhang, Q.; Wang, Y.; Ai, X.; Qian, J.* Highly Fluorinated Interphase Enables the Exceptional Stability of Monolithic Al Foil Anode for Li‐Ion Batteries. Adv. Funct. Mater. 2024, 34, 2316341. https://doi.org/10.1002/adfm.202316341
49. Xu, M.; Wu, C.; Zhang, F.; Zhang, Y.; Ren, J.; Zhang, C.; Wang, X.; Xiao, L.*; Fontaine, O.*; Qian, J.* Potential regulation strategy enables ferrocene as p-type redox mediator for direct regeneration of spent LiFePO4 cathode. Energy Storage Mater. 2024, 71, 103611. https://doi.org/10.1016/j.ensm.2024.103611
48. Yang, Z.-Z.; Zhang, C.-Y.; Ou, Y.-Q.; Su, Z.-K.; Zhao, Y.*; Cong, H.-J.; Ai, X.-P.; Qian, J.-F.* Amorphous Sb/C composite with isotropic expansion property as an ultra-stable and high-rate anode for lithium-ion batteries. Rare Metals 2024, 43 (5), 2039-2052. http://doi.org/10.1007/s12598-023-02548-x
47. Liu, K.; Tan, R.; Zheng, Z.; Zhao, R.; Ülgüt, B.*; Ai, X.; Qian, J.* Roll-to-Roll Fabrication of Lithiophilic Sn-Modified Cu Mesh via chemical tin plating approach for Long-Cycling Lithium Metal Batteries. Rare Metals 2024. https://doi.org/10.1007/s12598-024-02875-7
46. Zhao, R.; Chang, Z.; Fu, X.*; Xu, M.; Ai, X.; Qian, J.* Revisit of polyaniline as a high capacity organic cathode material for Li-ion batteries. Polymers 2024, 16 (10), 1401. https://doi.org/10.3390/polym16101401
45. Chen, Z.; Su, Z.; Qian, J.* Aromatic Alkali Metal Reagents: Structures, Properties and Applications. University Chemistry 2024, 39 (8), 149-162. https://doi.org/10.3866/PKU.DXHX202311054
44. Xu, M.; Zhang, F.; Zhang, Y.; Wu, C.; Zhou, X.; Ai, X.; Qian, J.* Controllable synthesis of a Na-enriched Na4V2(PO4)3 cathode for high-energy sodium-ion batteries: a redox-potential-matched chemical sodiation approach. Chemical Science 2023, 14 (44), 12570-12581. http://dx.doi.org/10.1039/D3SC03498D
43. Wu, C.; Xu, M.; Zhang, C.; Ye, L.; Zhang, K.; Cong, H.; Zhuang, L.; Ai, X.; Yang, H.; Qian, J.* Cost-effective recycling of spent LiMn2O4 cathode via a chemical lithiation strategy. Energy Storage Mater. 2023, 55, 154-165. https://doi.org/10.1016/j.ensm.2022.11.043
42. Wu, C.; Hu, J.; Chen, H.; Zhang, C.; Xu, M.; Zhuang, L.; Ai, X.; Qian, J. F.* Chemical lithiation methodology enabled Prussian blue as a Li-rich cathode material for secondary Li-ion batteries. Energy Storage Mater. 2023, 60, 102803. https://doi.org/10.1016/j.ensm.2023.102803
41. Xu, M.; Liu, M.; Yang, Z.; Wu, C.; Qian, J.* Research Progress on Presodiation Strategies for High Energy Sodium-Ion Batteries. Acta Phys-chim. Sin. 2023, 39 (3), 2210043. https://doi.org/10.3866/pku.Whxb202210043
40. Zhu, X.; Su, Z.; Wu, C.; Cong, H.; Ai, X.; Yang, H.; Qian, J.* Exfoliation of MoS2 Nanosheets Enabled by a Redox-Potential-Matched Chemical Lithiation Reaction. Nano Lett. 2022, 22 (7), 2956-2963. https://doi.org/10.1021/acs.nanolett.2c00148
39. Jung, Y. S.*; Qian, J.* Advances in Electrolyte Design for Storage Batteries. ACS Energy Lett. 2022, 7, 2864-2865.https://doi.org/10.1021/acsenergylett.2c01729
38. Ye, L.; Zhang, C.; Zhou, Y.; Ülgüt*, B.; Zhao, Y.; Qian, J.* Guided lithium nucleation and growth on lithiophilic tin-decorated copper substrate. J. Energy Chem. 2022, 74, 412-419. https://doi.org/10.1016/j.jechem.2022.07.027
37. Wu, C.; Hu, J.; Ye, L.; Su, Z.; Fang, X.; Zhu, X.; Zhuang, L.; Ai, X.; Yang, H.; Qian, J.* Direct Regeneration of Spent Li-Ion Battery Cathodes via Chemical Relithiation Reaction. ACS Sustainable Chem. Eng. 2021, 9 (48), 16384-16393. https://doi.org/10.1021/acssuschemeng.1c06278
36. Liu, M.; Yang, Z.; Shen, Y.; Guo, S.; Zhang, J.; Ai, X.; Yang, H.; Qian, J.* Chemically presodiated Sb with a fluoride-rich interphase as a cycle-stable anode for high-energy sodium ion batteries. J. Mater. Chem. A 2021, 9 (9), 5639-5647.http://dx.doi.org/10.1039/D0TA10880D
35.Wu, C.; Zhou, Y.; Zhu, X. L.; Zhan, M. Z.; Yang, H. X.; Qian, J. F.* Research Progress on High Concentration Electrolytes for Li Metal Batteries. Acta Phys-chim. Sin. 2021, 37 (2), 2008044-2008040. http://dx.doi.org/10.3866/Pku.Whxb202008044
34. Wu, C.; Guo, F.; Zhuang, L.*; Ai, X.; Zhong, F.; Yang, H.; Qian, J.* Mesoporous Silica Reinforced Hybrid Polymer Artificial Layer for High-Energy and Long-Cycling Lithium Metal Batteries. ACS Energy Lett. 2020, 5 (5), 1644-1652.https://doi.org/10.1021/acsenergylett.0c00804
33. Guo, F.; Wu, C.; Chen, H.; Zhong, F.; Ai, X.; Yang, H.; Qian, J.* Dendrite-free lithium deposition by coating a lithiophilic heterogeneous metal layer on lithium metal anode. Energy Storage Mater. 2020, 24, 635-643. https://doi.org/10.1016/j.ensm.2019.06.010
32. Shen, Y.; Qian, J.*; Yang, H.; Zhong, F.; Ai, X.* Chemically Prelithiated Hard-Carbon Anode for High Power and High Capacity Li-Ion Batteries. Small 2020, 16 (7), e1907602. https://doi.org/10.1002/smll.201907602
31. Liu, M.; Zhang, J.; Guo, S.; Wang, B.; Shen, Y.; Ai, X.; Yang, H.; Qian, J.* Chemically Presodiated Hard Carbon Anodes with Enhanced Initial Coulombic Efficiencies for High-Energy Sodium Ion Batteries. ACS Appl Mater Interfaces 2020, 12 (15), 17620-17627. https://doi.org/10.1021/acsami.9b21800
30. Guo, F.; Wu, C.; Chen, S.; Ai, X.; Zhong, F.; Yang, H.; Qian, J. * Flaky and Dense Lithium Deposition Enabled by a Nanoporous Copper Surface Layer on Lithium Metal Anode. ACS Materials Letters 2020, 2, 358-366. https://doi.org/10.1021/acsmaterialslett.0c00001
29. Shen, Y.; Zhang, J.; Pu, Y.; Wang, H.; Wang, B.; Qian, J.*; Cao, Y.; Zhong, F.; Ai, X.; Yang, H. Effective Chemical Prelithiation Strategy for Building a Silicon/Sulfur Li-Ion Battery. ACS Energy Lett. 2019, 4 (7), 1717-1724. https://doi.org/10.1021/acsenergylett.9b00889
28. Shao, M.; Deng, J.; Zhong, F.*; Cao, Y.; Ai, X.; Qian, J.*; Yang, H. An all-vanadium aqueous lithium ion battery with high energy density and long lifespan. Energy Storage Mater. 2019, 18, 92-99. https://doi.org/10.1016/j.ensm.2018.09.029
27. Shao, M.; Wang, B.; Liu, M.; Wu, C.; Ke, F.*; Ai, X.; Yang, H.; Qian, J.* A High-Voltage and Cycle Stable Aqueous Rechargeable Na-Ion Battery Based on Na2Zn3[Fe(CN)6]2- NaTi2(PO4)3 Intercalation Chemistry. ACS Appl. Energy Mater. 2019, 2 (8), 5809-5815. https://doi.org/10.1021/acsaem.9b00935
26. Xu, L.; Li, H.; Wu, X.; Shao, M.; Liu, S.; Wang, B.; Zhao, G.; Sheng, P.; Chen, X.; Han, Y.; Cao, Y.; Ai, X.; Qian, J.*; Yang, H. Well-defined Na2Zn3[Fe(CN)6]2 nanocrystals as a low-cost and cycle-stable cathode material for Na-ion batteries. Electrochem. Commun. 2019, 98, 78-81. https://doi.org/10.1016/j.elecom.2018.11.019
25. Qian, J. F.; Wu, C.; Cao, Y. L.; Ma, Z. F.; Huang, Y. H.*; Ai, X. P.; Yang, H. X.* Prussian Blue Cathode Materials for Sodium-Ion Batteries and Other Ion Batteries. Adv. Energy Mater. 2018, 8 (17), 1702619. https://doi.org/10.1002/aenm.201702619
24. Wan, G.; Guo, F.; Li, H.; Cao, Y.; Ai, X.; Qian, J.*; Li, Y.*; Yang, H.* Suppression of Dendritic Lithium Growth by In-situ Formation of a Chemically Stable and Mechanically Strong Solid Electrolyte Interphase. ACS Appl. Mater. Interfaces 2018, 10, 593-601. http://dx.doi.org/10.1021/acsami.7b14662
23. He, F.; Wu, X. J.; Qian, J. F.*; Cao, Y. L.; Yang, H. X.; Ai, X. P.*; Xia, D. G.* Building a cycle- stable sulphur cathode by tailoring its redox reaction into a solid- phase conversion mechanism. J. Mater. Chem. A 2018, 6 (46), 23396-23407. https://doi.org/10.1039/C8TA08159J
22. Wu, X.; Wu, C.; Wei, C.; Hu, L.; Qian, J.*; Cao, Y.; Ai, X.; Wang, J.; Yang, H.* Highly Crystallized Na2CoFe(CN)6 with Suppressed Lattice Defects as Superior Cathode Material for Sodium-Ion Batteries. ACS Appl. Mater. Interfaces 2016, 8 (8), 5393-5399. http://dx.doi.org/10.1021/acsami.5b12620
21. Wu, C.; Qian, J.*; Yang, H. * Recent Progress and Challenges in the Development of Prussian Blue Analogues as New Intercalation Cathode Materials. SCIENCE CHINA Chemistry 2017, 47 (5), 603-613. https://doi.org/10.1360/N032016-00218
20. Qian, J. F.; Adams, B. D.; Zheng, J. M.; Xu, W.; Henderson, W. A.; Wang, J.; Bowden, M. E.; Xu, S. C.; Hu, J. Z.; Zhang, J. G.* Anode-Free Rechargeable Lithium Metal Batteries. Adv. Funct. Mater. 2016, 26 (39), 7094-7102. http://dx.doi.org/10.1002/adfm.201602353
19. Deng, W.; Qian, J.*; Cao, Y.; Ai, X.; Yang, H.* Graphene-Wrapped Na2C12H6O4 Nanoflowers as High Performance Anodes for Sodium-Ion Batteries. Small 2016, 12 (5), 583-587. http://dx.doi.org/10.1002/smll.201502278
18. Wu, X.; Shao, M.; Wu, C.; Qian, J.*; Cao, Y.; Ai, X.; Yang, H.* Low defect FeFe (CN)6 framework as stable host material for high performance Li-ion batteries. ACS Appl. Mater. Interfaces 2016, 8 (36), 23706−23712. http://dx.doi.org/10.1021/acsami.6b06880
17. Qian, J.; Henderson, W. A.; Xu, W.; Bhattacharya, P.; Engelhard, M.; Borodin, O.; Zhang, J.-G.* High rate and stable cycling of lithium metal anode. Nature Commun. 2015, 6, 6362. https://doi.org/10.1038/ncomms7362
16. Qian, J.; Xu, W.*; Bhattacharya, P.; Engelhard, M.; Henderson, W. A.; Zhang, Y.; Zhang, J.-G.* Dendrite-free Li deposition using trace-amounts of water as an electrolyte additive. Nano Energy 2015, 15, 135-144. https://doi.org/10.1016/j.nanoen.2015.04.009
15. Wu, X.; Luo, Y.; Sun, M.; Qian, J.*; Cao, Y.; Ai, X.; Yang, H.* Low-defect Prussian blue nanocubes as high capacity and long life cathodes for aqueous Na-ion batteries. Nano Energy 2015, 13 (0), 117-123. http://dx.doi.org/10.1016/j.nanoen.2015.02.006
14. Wu, X.; Sun, M.; Guo, S.; Qian, J.*; Liu, Y.; Cao, Y.; Ai, X.; Yang, H.* Vacancy Free Prussian Blue Nanocrystals with High Capacity and Superior Cyclability for Aqueous Sodium Ion Batteries. ChemNanoMat 2015, 1 (3), 188-193. http://dx.doi.org/10.1002/cnma.201500021
13. Qian, J.*; Xiong, Y.; Cao, Y.; Ai, X.; Yang, H. * Synergistic Na-storage Reactions in Sn4P3 as A High Capacity and Cycle-stable Anode of Na-ion Batteries. Nano Lett. 2014, 14 (4), 1865-1869. http://dx.doi.org/10.1021/nl404637q
12. Zhang, Y.#; Qian, J.#; Xu, W.*; Russell, S. M.; Chen, X.; Nasybulin, E.; Bhattacharya, P.; Engelhard, M. H.; Mei, D.; Cao, R.; Ding, F.; Cresce, A. V.; Xu, K.; Zhang, J.-G.* Dendrite-Free Lithium Deposition with Self-Aligned Nanorod Structure. Nano Lett. 2014, 14 (12), 6889-6896. http://dx.doi.org/10.1021/nl5039117
11. Wu, X.; Sun, M.; Shen, Y.; Qian, J.*; Cao, Y..; Ai, X.; Yang, H.*. Energetic Aqueous Rechargeable Sodium-Ion Battery Based on Na2CuFe(CN)6–NaTi2(PO4)3 Intercalation Chemistry. ChemSusChem 2014, 7 (2), 407-411. http://dx.doi.org/10.1002/cssc.201301036
10. Qian, J.; Wu, X.; Cao, Y.; Ai, X.; Yang*, H. High Capacity and Rate Capability of Amorphous Phosphorus for Sodium Ion Batteries. Angew. Chem. Int. Ed. 2013, 52 (17), 4633-4636. http://dx.doi.org/10.1002/anie.201209689
9. Zhu, L.; Shen, Y.; Sun, M.; Qian, J.*; Cao, Y.; Ai, X.; Yang, H.* Self-doped polypyrrole with ionizable sodium sulfonate as a renewable cathode material for sodium ion batteries. Chem. Commun. 2013, 49 (97), 11370-11372. http://dx.doi.org/10.1039/C3CC46642F
8. Yang, H. X.; Qian, J. F. Recent Development of Aqueous Sodium Ion Batteries and Their Key Materials. J. Inorg. Mater. 2013, 28 (11), 1165-1171. http://dx.doi.org/10.3724/SP.J.1077.2013.13388
7. Wu, X.; Deng, W.; Qian, J.*; Cao, Y.; Ai, X.; Yang, H.* Single-crystal FeFe(CN)6 nanoparticles: a high capacity and high rate cathode for Na-ion batteries. J. Mater. Chem. A 2013, 1 (35), 10130-10134. http://dx.doi.org/10.1039/C3TA12036H
6. Wu, X.; Cao, Y.; Ai, X.; Qian, J.*; Yang, H.* A low-cost and environmentally benign aqueous rechargeable sodium-ion battery based on NaTi2(PO4)3–Na2NiFe(CN)6 intercalation chemistry. Electrochem. Commun. 2013, 31 (0), 145-148. http://dx.doi.org/10.1016/j.elecom.2013.03.013
5. Deng, W. W.; Liang, X. M.; Wu, X. Y.; Qian, J. F.*; Cao, Y. L.; Ai, X. P.; Feng, J. W.; Yang, H. X.* A low cost, all-organic Na-ion Battery Based on Polymeric Cathode and Anode. Scientific Reports 2013, 3, 2671. https://doi.org/10.1038/srep02671
4. Qian, J.; Gao, X.; Yang, H. * Electrochemical Na-Storage Materials and Their Applications for Na-ion Batteries. Journal of Electrochemistry 2013, 19 (6), 523-529. http://dx.doi.org/10.13208/j.electrochem.130351
3. Qian, J. F.; Zhou, M.; Cao, Y. L.; Ai, X. P.; Yang, H. X.* Nanosized Na4(FeCN)6/C Composite as a Low-Cost and High-Rate Cathode Material for Sodium-Ion Batteries. Adv. Energy Mater. 2012, 2 (4), 410-414.https://doi.org/10.1002/aenm.201100655
2. Qian, J. F.; Qiao, D.; Ai, X. P.; Cao, Y. L.; Yang, H. X.* Reversible 3-Li storage reactions of amorphous phosphorus as high capacity and cycling-stable anodes for Li-ion batteries. Chem. Commun. 2012, 48 (71), 8931-8933. https://doi.org/10.1039/c2cc34388f
1. Qian, J. F.; Chen, Y.; Wu, L.; Cao, Y. L.; Ai, X. P.; Yang, H. X.* High capacity Na-storage and superior cyclability of nanocomposite Sb/C anode for Na-ion batteries. Chem. Commun. 2012, 48 (56), 7070-7072. https://doi.org/10.1039/c2cc32730a
欢迎有志于从事新能源材料研究的同学加入本课题组,研究背景不限(材料、无机、有机、高分子等均可)!