Wang Ran

With Certificate of Graduation for Doctorate Study

Personal Information

Gender:Male
Date of Employment:2015-12-07
Business Address:武汉大学理学院西北楼309
E-Mail:

VIEW MORE

Other Contact Information

PostalAddress :

email :


Home > Scientific Research
Research Field

    Research Area:  Probability Theory and Stochastic Analysis

     

    1. (with X. Wang and L. Wu) Sanov's theorem in the Wasserstein distance: A necessary and sufficient condition. Statist. Probab. Lett.  80, 505-512, 2010.  

    2. (with Y. Ma and L. Wu) Transportation-information inequalities for continuum Gibbs measures. Electron. Commun. Probab. 16, 600-613, 2011. 

    3. (with L. Lemle and L. Wu) Uniqueness of Fokker-Planck equations for spin lattice systems (I): compact case. Semigroup Forum 86(3), 583-591, 2013. 

    4. (with L. Lemle and L. Wu) Uniqueness of Fokker-Planck equations for spin lattice systems (II): Non-compact case. Science China Math. 57(1), 161-172, 2014. 

    5. (with T. S. Zhang) Moderate deviations for stochastic reaction-diffusion equations with multiplicative noise. Potential Anal. 42, 99-113, 2015. 

    6.  (with J. L. Zhai and T. S. Zhang) A moderate deviation principle for 2-D stochastic Navier-Stokes equations. J. Differential Equations 258, 3363-3390, 2015. 

    7. (with L. Xu) Asymptotics of the entropy production rate for d-dimensional Ornstein-Uhlenbeck processes. J. Stat. Phys. 160(5), 1336-1353, 2015. 

    8. (with Y. Li and S. Zhang) Moderate deviations for a stochastic heat equation with spatially correlated noise. Acta Appl. Math. 139, 59-80, 2015. 

    9. (with J. L. Zhai and T. S. Zhang) Exponential mixing for stochastic model of two-dimensional second grade fluids. Nonlinear Anal. 132, 196-213, 2016. 

    10. (with Y. Ma and L. Wu) Log-Sobolev, isoperimetry and transport inequalities on graphs.  Acta Math. Sinica, English Series 32(10), 1221-1236, 2016. 

    11. (with Y. Li, N. Yao and S. Zhang) A moderate deviation principle for stochastic Volterra equation. Statist. Probab. Lett. 122, 79-85, 2017. 

    12. (with J. Xiong and L. Xu) Irreducibility of stochastic real Ginzburg-Landau equation driven by $\alpha$-stable noises and applications. Bernoulli 23(2), 1179-1201, 2017. 

    13. (with J. Xiong and L. Xu) Asymptotics for stochastic reaction-diffusion equation driven by subordinate Brownian motions, Stochastic Process. Appl. 128, 1772-1796, 2018. 

    14. (with L. Cheng, R. Li and N. Yao) Moderate deviations for a stochastic wave equation in dimension three, Acta Appl. Math. 158, 67-85, 2018. 

    15. (with Y. Ma)  Transportation cost inequalities for stochastic reaction-diffusion equations with L\'evy noises and non-Lipschitz reaction terms, Acta Math. Sin., Engl. Ser. 36 (2) 121–136, 2020. 

    16. (with S. Hu)  Asymptotics of stochastic Burgers equation with jumps. Statist. Probab. Lett. 162 108770, 9 pp, 2020.

    17. (with S. Shang) Transportation inequalities under uniform metric for a stochastic heat equation driven by time-white and space-colored noise. Acta Appl. Math. 170,  81–97, 2020.

    18. (with J. Xiong and L. Xu) Large deviation principle of occupation measures for non-linear monotone SPDEs, Science China Math.  64(4), 799–822, 2021.

    19. (with  X. Sun, L. Xu and X. Yang)  Large deviation for two-time-scale stochastic Burgers equation. Stoch. Dyn., 21(5), Paper No. 2150023, 37 pp, 2021.      

    20. (with S. Zhang) Decompositions of stochastic convolution driven by a white-fractional Gaussian noise. Front. Math. China 16(4), 1063–1073, 2021. 

    21. (with J. Zhai and S. Zhang) Large deviation principle for stochastic Burgers type equation with reflection. Commun. Pure Appl. Anal. 21 (1) 213–238, 2022. 

    22. (with Y. Xiao)  Lower functions and Chung's LILs of the generalized fractional Brownian motion. J. Math. Anal. Appl. 514 (2), Paper No. 126320, 31 pp, 2022.

    23. (with Y. Xiao) Exact Uniform Modulus of Continuity and Chung’s LIL for the Generalized Fractional Brownian Motion. J. Theor. Probab. 35, 2442–2479 (2022). 

    24. (with B. Zhang) Large deviation principle for stochastic generalized Ginzburg-Landau equation driven by jump noise.  Acta Math. Sci. Ser. B (Engl. Ed.)  43B, 2023.


     

     



Paper Publications

    No content

Patents

    No content

Published Books

    No content

Research Projects

    No content

Research Team

    No content