• 其他栏目

    魏振威

    • 博士生导师 硕士生导师
    • 性别:男
    • 学历:博士研究生毕业
    • 在职信息:在职
    • 所在单位:化学与分子科学学院
    • 入职时间: 2020-12-02
    • 办公地点:化学与分子科学学院西南101
    • 电子邮箱:

    访问量:

    开通时间:..

    最后更新时间:..

    个人简介

    个人介绍

    魏振威,男,汉族,武汉大学化学与分子科学学院教授,分析科学研究中心主任。2007-2016年就读于清华大学化学系,分别获得化学学士与博士学位(导师张新荣教授)。2016-2020于美国普渡大学化学系Aston Lab从事博士后研究工作,合作导师R Graham Cooks教授。2021年加入武汉大学化学与分子科学学院工作,主要从事原位质谱分析方法学研究与仪器开发。在Chem,JACS,ACIE,Anal. Chem.等期刊上发表论文20余篇,参与编写质谱专著2部,获教育部自然科学奖一等奖一项(排名第六)。2021年入选国家海外高层次人才计划,武汉市“武汉英才”计划;主持国家自然科学基金2项,科技部重点项目(青年)1项。现担任中国化学快报(英文版)青年编委。

    课题组长期招聘博士后,热忱欢迎各位同学来组内进行业余学习!欢迎感兴趣的同学积极联系报考本组研究生!

     

    研究方向

    本课题组主要致力于质谱分析方法学的研究,并以此为基础对于介观尺度下物理化学、生命科学以及合成科学的前沿问题进行研究,主要包括三个方向。

     

    1.质谱离子化原理与质谱离子源

    离子源是质谱的核心构成之一,发挥着将待测分子转化为带电离子并引入质谱的功能。我们致力于探究新颖的离子化原理和开发新型离子源以完成不同的分析任务。目前我们主要关注小体积样品(纳升至皮升级)的分析,重点发展样品损耗低的敞开式静电场诱导电喷雾方法以及电化学、光化学反应原位质谱分析方法等原位质谱分析技术。根据不同的实现原理与分析需求,通过3D打印制造零件搭建不同结构与功能的离子源装置;通过毛细管拉制仪与离子溅射装置,构筑不同分析需求中使用的纳升点喷雾载具;借助显微平台进行精细显微操作与微区分析。


    图1. 实验室离子源开发涉及的仪器与目前较为成熟的离子源分析系统


    2.原位质谱反应监测方法

    开发原位质谱离子化方法,对于化学反应过程进行监测具有重要意义。我们利用质谱对于气液界面的反应进行研究,发现微液滴比常规化学反应体系(试管烧瓶)中反应速率更快,转化率更高。事实上,这种独特的反应加速现象不仅存在于电喷雾中,还广泛存在于液体薄膜,囊泡等小体积空间内。我们关注微液滴反应加速的深层次机理,并且关注其在分析科学中的应用。


    图2. 质谱反应监测技术探究微液滴化学反应机理


    近年来,电化学催化与光化学催化在合成科学与分析科学中引起了广泛的研究兴趣。对活性中间体的表征可以为理解电化学反应的过程与机理提供重要的实验依据。我们基于敞开式离子化的设计思路,致力于开发新颖的、原位的、准确的电化学与光化学反应界面表征方法,例如电极/电解池与质谱离子源的集成化设计、界面产物的原位采样与离子化方法等。充分借助质谱法的高灵敏度和特异性,实现对于复杂电化学过程中间体的捕获、结构鉴定与定量分析,促进全新电化学反应机理的发现与验证。


    图3. 电位、电流精确可控电化学反应原位高分辨质谱分析系统,实现电化学反应中间体的定性与定量分析


    3. 超小体积生物质谱分析方法

    代谢物与蛋白质是生命活动的物质与能量基础,几乎参与了机体运行的所有过程。准确获得这些物质的结构、含量、时空信息对探索生命现象和解释生命活动规律具有重要意义。我们基于采样、富集、分离、检测一体化的设计思路,致力于开发快速的、原位的、微量的、高灵敏度的代谢物和蛋白质分析方法,例如单细胞及微区活体样本的质谱原位富集与分离方法、化学选择性标记-质谱亚代谢组分析方法、临床样本中大/小分子药物在线质谱分析方法等。通过将微分离、微萃取、微电泳、化学标记等前处理技术和质谱的创新式联用,实现对于小体积复杂生物样品中代谢物、蛋白质定性、定量和定位分析,促进对生命活动、疾病诊断与治疗等机制的新发现和新理解。


    图4. 针对代谢物的微区分析、临床快检等需求开发的生物质谱分析方法与仪器装置


    论文发表情况

    1. Cui X, Chen J, Yi H, et al. Mapping Reaction Pathways by In Situ Step Sweep Voltammetry Flow Electrochemical Mass Spectrometry[J]. Analytical Chemistry, 2024.

      https://doi.org/10.1021/acs.analchem.4c04117

    2. Liu, X., Chen, J., Wei, Z*., Yi, H.*, & Lei, A*. (2024). Deciphering reactive intermediates in electrooxidative coupling of indoles through real-time mass spectrometry. Chem.

      https://doi.org/10.1016/j.chempr.2024.02.020

    3. Wang, W., Han, J., Zheng, Y., Wang, H., Zhu, C., Li, Y., Feng, Y., Wei, Z*. and Wang, X*. (2024), Direct Analysis of Whole Blood by a Disposable Monolithic Column Mass Spectrometry Analysis Kit. Chin. J. Chem

      https://doi.org/10.1002/cjoc.202300646

    4. Dong, J., Chen, J., Wang, W., Wei, Z*., Tian, Z. Q., & Fan, F. R*. (2024). Charged Microdroplets as Microelectrochemical Cells for CO2 Reduction and C–C Coupling. Journal of the American Chemical Society, 146(3), 2227-2236.

      https://doi.org/10.1021/jacs.3c12586

    5. Han, J., Wang, X., Wang, W., Chen, J., Xu, B., & Wei, Z*. (2023). Direct Analysis of Micro-biopsy Samples by Polarity Gradient Focusing Dip-and-Go Mass Spectrometry. Analytical Chemistry, 95(35), 13266-13272.

      https://doi.org/10.1021/acs.analchem.3c02425

    6. Chen, J., Wang, X., Cui, X., Li, Y., Feng, Y., & Wei, Z. (2023). In Situ Probing and Identification of Electrochemical Reaction Intermediates by Floating Electrolytic Electrospray Mass Spectrometry. Angewandte Chemie, 135(12), e202219302.

      https://doi.org/10.1002/ange.202219302

    7. Wang, X., Bai, P., Li, Z., Zhu, Q. F., Wei, Z., & Feng, Y. Q. (2022). Rapid and economical chemoselective metabolomics using boronate ester formation on a monolithic substrate. Angewandte Chemie, 61(44), e202208138.

      https://doi.org/10.1002/anie.202208138

    8. Chen, X., Wei, Z., Huang, K. H., Uehling, M., Wleklinski, M., Krska, S., ... & Cooks, R. G. (2022). Pd Reaction Intermediates in Suzuki‐Miyaura Cross‐Coupling Characterized by Mass Spectrometry. ChemPlusChem, 87(3), e202100545.

      https://doi.org/10.1002/cplu.202100545

    9. Qiu, L., Wei, Z., Nie, H., & Cooks, R. G. (2021). Reaction acceleration promoted by partial solvation at the gas/solution interface. ChemPlusChem, 86(10), 1362-1365.

      https://doi.org/10.1002/cplu.202100373

    10. Li, Y., Mehari, T. F., Wei, Z., Liu, Y., & Cooks, R. G. (2021). Reaction acceleration at air‐solution interfaces: Anisotropic rate constants for Katritzky transamination. Journal of Mass Spectrometry, 56(4), e4585.

      https://doi.org/10.1002/jms.4585

    11. Li, Y., Mehari, T. F., Wei, Z., Liu, Y., & Cooks, R. G. (2021). Reaction acceleration at solid/solution interfaces: Katritzky reaction catalyzed by glass particles. Angewandte Chemie, 60(6), 2929-2933.

      https://doi.org/10.1002/anie.202014613

    12. Huang, K. H., Wei, Z., & Cooks, R. G. (2021). Accelerated reactions of amines with carbon dioxide driven by superacid at the microdroplet interface. Chemical Science, 12(6), 2242-2250.

      https://doi.org/10.1039/D0SC05625A

    13. Chen, R., Wei, Z., & Cooks, R. G. (2020). Collection and Characterization by Mass Spectrometry of the Neutral Serine Octamer Generated upon Sublimation. Analytical Chemistry, 93(2), 1092-1099.

      https://doi.org/10.1021/acs.analchem.0c04107

    14.  Wei, Z., Li, Y., Cooks, R. G., & Yan, X. (2020). Accelerated reaction kinetics in microdroplets: Overview and recent developments. Annual Review of Physical Chemistry, 71, 31-51.

      https://doi.org/10.1146/annurev-physchem-121319-110654

    15. Nie, H., Wei, Z., Qiu, L., Chen, X., Holden, D. T., & Cooks, R. G. (2020). High-yield gram-scale organic synthesis using accelerated microdroplet/thin film reactions with solvent recycling. Chemical Science, 11(9), 2356-2361.

      https://doi.org/10.1039/C9SC06265C

    16. Wei, Z., Xie, Z., Kuvelkar, R., Shah, V., Bateman, K., McLaren, D. G., & Cooks, R. G. (2019). High‐throughput bioassays using “dip‐and‐go” multiplexed electrospray mass spectrometry. Angewandte Chemie, 58(49), 17594-17598.

      https://doi.org/10.1002/anie.201909047

    17. Fedick, P. W., Iyer, K., Wei, Z., Avramova, L., Capek, G. O., & Cooks, R. G. (2019). Screening of the suzuki cross-coupling reaction using desorption electrospray ionization in high-throughput and in leidenfrost droplet experiments. Journal of The American Society for Mass Spectrometry, 30(10), 2144-2151.

      https://doi.org/10.1007/s13361-019-02287-3

    18. Zhang, H., Wei, Z., Jiang, J., & Cooks, R. G. (2018). Nebulization prior to isolation, ionization, and dissociation of the neutral serine octamer allows its characterization. Angewandte Chemie, 130(52), 17387-17391.

      https://doi.org/10.1002/ange.201811098

    19. Wei, Z., Zhang, X., Wang, J., Zhang, S., Zhang, X., & Cooks, R. G. (2018). High yield accelerated reactions in nonvolatile microthin films: chemical derivatization for analysis of single-cell intracellular fluid. Chemical

      Science, 9(40), 7779-7786.

      https://doi.org/10.1039/C8SC03382J

    20. Wei, Z., Wleklinski, M., Ferreira, C., & Cooks, R. G. (2017). Reaction acceleration in thin films with continuous product deposition for organic synthesis. Angewandte Chemie, 129(32), 9514-9518.

      https://doi.org/10.1002/ange.201704520

    21. Zhao, Y., Wei, Z., Zhao, H., Jia, J., Chen, Z., Zhang, S., ... & Zhang, X. (2016). In situ ion-transmission mass spectrometry for paper-based analytical devices. Analytical chemistry, 88(22), 10805-10810.

      https://doi.org/10.1021/acs.analchem.6b03272

    22. Zhang, X. C., Wei, Z. W., Gong, X. Y., Si, X. Y., Zhao, Y. Y., Yang, C. D., ... & Zhang, X. R. (2016). Integrated droplet-based microextraction with ESI-MS for removal of matrix interference in single-cell analysis. Scientific reports, 6(1), 24730.

      https://doi.org/10.1038/srep24730

    23. Wei, Z., Xiong, X., Guo, C., Si, X., Zhao, Y., He, M., ... & Zhang, X. (2015). Pulsed direct current electrospray: enabling systematic analysis of small volume sample by boosting sample economy. Analytical chemistry, 87(22), 11242-11248.

      https://doi.org/10.1021/acs.analchem.5b02115

    24. Li, Y., Ma, X., Wei, Z., Gong, X., Yang, C., Zhang, S., & Zhang, X. (2015). Pyroelectricity Assisted Infrared-Laser Desorption Ionization (PAI-LDI) for Atmospheric Pressure Mass Spectrometry. Journal of The American Society for Mass Spectrometry, 26(8), 1266-1273.

      https://doi.org/10.1007/s13361-015-1154-6

    25. Zhao, Y., Gong, X., Si, X., Wei, Z., Yang, C., Zhang, S., & Zhang, X. (2015). Coupling a solid phase microextraction (SPME) probe with ambient MS for rapid enrichment and detection of phosphopeptides in biological samples. 

      Analyst, 140(8), 2599-2602.

      https://doi.org/10.1039/C4AN02156H

    26. Wei, Z., Han, S., Gong, X., Zhao, Y., Yang, C., Zhang, S., & Zhang, X. (2013). Rapid removal of matrices from small-volume samples by step-voltage nanoelectrospray. Angewandte Chemie, 52(42), 11025-11028.

      https://doi.org/10.1002/anie.201302870

    27. Ma, X., Wei, Z., Xiong, X., Jiang, Y., He, J., Zhang, S., ... & Zhang, X. (2012). Gas-phase fragmentation of host–guest complexes between β-cyclodextrin and small molecules. Talanta, 93, 252-256.

      https://doi.org/10.1016/j.talanta.2012.02.029

    教育经历

    2011.8 -- 2016.7
    清华大学       化学       博士

    2007.8 -- 2011.7
    清华大学       化学       学士

    工作经历

    2016.10 -- 2020.10

    普渡大学(Purdue University)      化学系      博士后研究员