Guobin Zhu
+
Personal Information
- Supervisor of Doctorate Candidates
- Supervisor of Master's Candidates
- Name (Pinyin):Zhu Guobin
- E-Mail:
- Education Level:研究生毕业
- Business Address:Room 1104, School of Cyber Science and Engineering, Wuhan University
- Gender:Male
- Contact Information:Tel. +86-27-68778916 Mobile: +86-18040500277 http://rsgis.whu.edu.cn/index.php?m=content&c=index&a=show&catid=127&id=6311
- Academic Titles:Director of Dept. of Spatial Information & Digital Technology
- Alma Mater:Ben-Gurion University of the Negev
- Teacher College:School of Remote Sensing and Information Engineering
- Discipline:
Photogrammetry and Remote Sensing
- Honors and Titles
2018 elected:Honorary Title of Hubei Provincial Industrial Professors
2017 elected:Honorary Title of Innovation & Creative Talent of Yangzhou City, Jiangsu Province
2016 elected:Honorary Title of Outstanding Communist Party Member of Wuhan University
2016 elected:Honorary Title of Progressive Individual for Major Evaluation at Wuhan University
2015 elected:湖北省优秀学士论文指导教师
2015 elected:Honorary Title of Outstanding Navigator for Students of Wuhan University
2014 elected:Honorary Title of the Yellow Crane Talent of Wuhan City
2013 elected:Honorary Title of Representatives of the CPC Congress of Wuhan University
2013 elected:Honorary Title of Progressive Individual for Teaching and Educating at Wuhan University
Other Contact Information
- ZipCode:
- PostalAddress:
- OfficePhone:
- Telephone:
- email:
陈婷婷
- Date:2018-12-03
- Hits:
Duration of Study:
2016-2018Major:
Software EngineeringResearch Focus:
金融信息工程Personal Profile:
在对多种传统机器学习算法进行分析后,提出了基于Stacking模型融合的情感极性分类算法,将多个强分类器进行融合构造一个表现更优的模型。本文采用两层Stacking模型,第一层使用训练样本数据训练多个不同质的分类器,使用5-fold交叉验证的方式,把第一层的输出结果矩阵(5-fold输出的预测结果矩阵)作为输入数据训练第二层的模型。所有测试数据同样使用第一层的多个分类器进行预测,得到测试数据的预测结果矩阵。使用第一层的输出结果矩阵训练第二层分类模型,并进行预测得到最终分类结果。通过与传统单分类器算法和集成算法相比,本文方法的学习效果得到提升。Education Level:
研究生毕业Degree:
硕士Current Status:
离校Graduation Thesis Title:
《基于机器学习的中文情感极性分类研究》Student ID:
2016282160033Date of Registration:
2016-09-01Date of Graduation:
2018-06-30