新闻网 | 中文官网  

张海波

副教授

基本信息 / Basic Information

  • 教师英文名称: Haibo Zhang
  • 教师拼音名称: Zhang Haibo
  • 所在单位: 化学与分子科学学院
  • 职务: 化学国家级实验教学示范中心(武汉大学)副主任
  • 学历: 研究生毕业
  • 性别: 男
  • 在职信息: 在职
  • 毕业院校: 武汉大学
  • 学科: 应用化学 、 化学其他专业

联系我们/ Contact Us

  • 通讯/办公地址

  • 邮箱

论文成果

当前位置: 武汉大学张海波 - 科学研究 - 论文成果

High Faraday efficiency of Cu 1 Co 1 -BCN based on a dodecahydro-closo-dodecaborate hybrid for electrocatalytic reduction of nitrate to ammonia

发布时间:2023-09-28
点击次数:
DOI码:
10.1039/D3TA04385A
发表刊物:
Journal of Materials Chemistry A
摘要:
The process of electrocatalytic nitrate reduction reaction (NIRR) to produce ammonia (NH 3) presents a promising solution to the challenges of nitrate contamination and high value ammonia synthesis. However, owing to the eight-electron reaction of NIRR, the cathode catalyst type plays a crucial role in governing the NIRR. Herein, Cu 1 Co 1-BCN was prepared as an electrochemical cathode catalyst for the conversion of NO 3 − to NH 3 using a dodecahydro-closo-dodecaborate hybrid (closo-[B 12 H 12 ] 2−). The catalyst exhibited an excellent ammonia yield (6412.06 mg h −1 mg cat −1) at −0.5 V versus the reversible hydrogen electrode and a Faraday efficiency (FE) of 92.44%. Additionally, Cu 1 Co 1-BCN exhibited remarkable resistance to interference in 10 mM interfering ion solutions and excellent resistance to acids and bases even at extreme pH levels. It also showed almost no variation in the ammonia yield and FE over ten experimental cycles, thereby indicating its remarkable stability. Furthermore, density functional theory (DFT) calculations confirmed the likelihood of the occurrence of the intermediate step (*N / *NH), adsorption of NO 3 − , and desorption of NH 3 by Cu 1 Co 1-BCN, thereby facilitating the conversion of NO 3 − to NH 3. These findings offer new insights with regard to designing catalysts for green electrocatalytic ammonia synthesis.
论文类型:
期刊论文
论文编号:
10.1039/D3TA04385A
学科门类:
理学
文献类型:
J
期号:
11
页面范围:
20234-20241
是否译文:
发表时间:
2023-09-11
收录刊物:
SCI、EI
发布期刊链接:
https://doi.org/10.1039/D3TA04385A