Click:

The Last Update Time:--

Guobin Zhu
+
Personal Information
  • Supervisor of Doctorate Candidates
  • Supervisor of Master's Candidates
  • Name (Pinyin):Zhu Guobin
  • E-Mail:
  • Education Level:研究生毕业
  • Business Address:Room 1104, School of Cyber Science and Engineering, Wuhan University
  • Gender:Male
  • Contact Information:Tel. +86-27-68778916 Mobile: +86-18040500277 http://rsgis.whu.edu.cn/index.php?m=content&c=index&a=show&catid=127&id=6311
  • Academic Titles:Director of Dept. of Spatial Information & Digital Technology
  • Alma Mater:Ben-Gurion University of the Negev
  • Teacher College:School of Remote Sensing and Information Engineering
  • Discipline: Photogrammetry and Remote Sensing
  • Honors and Titles
      2018  elected:Honorary Title of Hubei Provincial Industrial Professors

      2017  elected:Honorary Title of Innovation & Creative Talent of Yangzhou City, Jiangsu Province

      2016  elected:Honorary Title of Outstanding Communist Party Member of Wuhan University

      2016  elected:Honorary Title of Progressive Individual for Major Evaluation at Wuhan University

      2015  elected:湖北省优秀学士论文指导教师

      2015  elected:Honorary Title of Outstanding Navigator for Students of Wuhan University

      2014  elected:Honorary Title of the Yellow Crane Talent of Wuhan City

      2013  elected:Honorary Title of Representatives of the CPC Congress of Wuhan University

      2013  elected:Honorary Title of Progressive Individual for Teaching and Educating at Wuhan University
Other Contact Information
  • ZipCode:
  • PostalAddress:
  • OfficePhone:
  • Telephone:
  • email:
Current position: Home   >   Student Information

张景

  • Date:2018-12-03
  • Hits:
  • Duration of Study: 

    2015-2018
  • Employment Status: 

    杭州阿里巴巴
  • Major: 

    Software Engineering
  • Research Focus: 

    数字媒介
  • Personal Profile: 


    提出了一种基于CBOW-LDA的主题建模方法,先采用基于CBOW词向量的方法对目标语料进行相似词聚类,再以聚类结果为输入语料进行后续LDA主题模型文本表达和主题建模。以Stack Overflow网站上的编程问题帖的文本数据作为研究对象,采集2010-2015年的问题帖数据集POST进行实验,同等主题数下采用困惑度(perplexity)来度量算法性能,结果表明采用CBOW—LDA方法与现有的基于词频权重的词量化主题建模TF-LDA方法相比困惑度更低;同时在对Stack Overflow的热点挖掘上,建立手工标注的标准评测集进行判定,结果表明CBOW—LDA评价指标优于TF-LDA,证实CBOW—LDA具有良好的算法性能和热点挖掘效果。研究成功挖掘出Stack Overflow上2010-2015年的热门主题和热搜词汇并进行相关数据分析,设计完成了基于CBOW-LDA热点主题发现的原型工具,运用该原型工具能快速便捷地实现对特定数据语料的热点主题发现和挖掘。
  • Education Level: 

    With Certificate of Graduation for Study as Master's Candidates
  • Degree: 

    硕士
  • Current Status: 

    离校
  • Graduation Thesis Title: 

    《基于CBOW-LDA主题模型的Stack Overflow网站热点主题发现研究》
  • Student ID: 

    2015202160011
  • Date of Registration: 

    2015-09-01
  • Date of Graduation: 

    2018-06-30